Update tasks/text.py
Browse files- tasks/text.py +20 -3
tasks/text.py
CHANGED
@@ -7,6 +7,12 @@ import random
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
router = APIRouter()
|
11 |
|
12 |
DESCRIPTION = "Random test"
|
@@ -56,9 +62,20 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
#--------------------------------------------------------------------------------------------
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
#--------------------------------------------------------------------------------------------
|
64 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
+
## add-on imports
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
from sklearn.preprocessing import MinMaxScaler
|
13 |
+
import numpy as np
|
14 |
+
import pickle
|
15 |
+
|
16 |
router = APIRouter()
|
17 |
|
18 |
DESCRIPTION = "Random test"
|
|
|
62 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
63 |
#--------------------------------------------------------------------------------------------
|
64 |
|
65 |
+
## Models loading
|
66 |
+
query_prompt_name = "s2s_query"
|
67 |
+
model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True).cuda()
|
68 |
+
|
69 |
+
with open('logistic_regression_model.pkl', 'rb') as file:
|
70 |
+
disp = pickle.load(file)
|
71 |
+
|
72 |
+
## Data prep
|
73 |
+
embeddings = model.encode(list(test_dataset['quote']), prompt_name=query_prompt_name)
|
74 |
+
scaler = MinMaxScaler()
|
75 |
+
X_scaled = scaler.fit_transform(embeddings)
|
76 |
+
|
77 |
+
## Predictions
|
78 |
+
predictions= disp.predict(X_scaled)
|
79 |
|
80 |
#--------------------------------------------------------------------------------------------
|
81 |
# YOUR MODEL INFERENCE STOPS HERE
|