File size: 3,890 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
c98f02f
 
 
 
a8a6edb
c98f02f
4d6e8c2
 
bb3ba6b
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
 
 
 
 
4d6e8c2
c98f02f
6122595
c98f02f
 
6122595
 
a8a6edb
a2de25b
c98f02f
 
 
 
 
 
 
6122595
70f5f26
 
 
 
 
4d6e8c2
 
 
 
a8a6edb
4d6e8c2
 
 
 
 
 
 
bb3ba6b
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

## add-on imports
from sentence_transformers import SentenceTransformer
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import skops.io as sio

router = APIRouter()

DESCRIPTION = "Embedding + Logistic Regression"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    ## Models loading
    # Embedding model
    query_prompt_name = "s2s_query"
    model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True).cuda()

    # Pre-trained Logistic Regression model
    trusted_types = ['sklearn.feature_selection._univariate_selection.f_classif']
    disp = sio.load('./tasks/logistic_regression_model.skops',trusted=trusted_types)
    
    ## Data prep
    embeddings = model.encode(list(test_dataset['quote']), prompt_name=query_prompt_name)
    scaler = MinMaxScaler()
    X_scaled = scaler.fit_transform(embeddings)
    
    ## Predictions
    predictions = disp.predict(X_scaled)

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    true_labels = test_dataset["label"]
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results