Spaces:
Running
Running
| import os | |
| import shutil | |
| import gradio as gr | |
| from huggingface_hub import HfApi, whoami, ModelCard | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from textwrap import dedent | |
| from pathlib import Path | |
| from tempfile import TemporaryDirectory | |
| from huggingface_hub.file_download import repo_folder_name | |
| from optimum.exporters.tasks import TasksManager | |
| from optimum.intel.utils.constant import _TASK_ALIASES | |
| from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS | |
| from optimum.exporters import TasksManager | |
| from optimum.intel.utils.modeling_utils import _find_files_matching_pattern | |
| from optimum.intel import ( | |
| OVModelForAudioClassification, | |
| OVModelForCausalLM, | |
| OVModelForFeatureExtraction, | |
| OVModelForImageClassification, | |
| OVModelForMaskedLM, | |
| OVModelForQuestionAnswering, | |
| OVModelForSeq2SeqLM, | |
| OVModelForSequenceClassification, | |
| OVModelForTokenClassification, | |
| OVStableDiffusionPipeline, | |
| OVStableDiffusionXLPipeline, | |
| OVLatentConsistencyModelPipeline, | |
| OVModelForPix2Struct, | |
| OVWeightQuantizationConfig, | |
| ) | |
| def quantize_model( | |
| model_id: str, | |
| dtype: str, | |
| calibration_dataset: str, | |
| ratio: str, | |
| private_repo: bool, | |
| overwritte: bool, | |
| oauth_token: gr.OAuthToken, | |
| ): | |
| if oauth_token.token is None: | |
| raise ValueError("You must be logged in to use this space") | |
| model_name = model_id.split("/")[-1] | |
| username = whoami(oauth_token.token)["name"] | |
| new_repo_id = f"{username}/{model_name}-openvino-{dtype}" | |
| task = TasksManager.infer_task_from_model(model_id) | |
| library_name = TasksManager.infer_library_from_model(model_id) | |
| # task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token) | |
| # library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token) | |
| if task not in _HEAD_TO_AUTOMODELS: | |
| raise ValueError( | |
| f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported" | |
| ) | |
| if task == "text2text-generation": | |
| raise ValueError("Export of Seq2Seq models is currently disabled.") | |
| auto_model_class = _HEAD_TO_AUTOMODELS[task] | |
| ov_files = _find_files_matching_pattern( | |
| model_id, | |
| pattern=r"(.*)?openvino(.*)?\_model.xml", | |
| use_auth_token=oauth_token.token, | |
| ) | |
| export = len(ov_files) == 0 | |
| is_int8 = dtype == "int8" | |
| if library_name == "diffusers": | |
| quant_method = "hybrid" | |
| elif not is_int8: | |
| quant_method = "awq" | |
| else: | |
| quant_method = "default" | |
| quantization_config = OVWeightQuantizationConfig( | |
| bits=8 if is_int8 else 4, | |
| quant_method=quant_method, | |
| dataset=None if quant_method=="default" else calibration_dataset, | |
| ratio=1.0 if is_int8 else ratio, | |
| ) | |
| api = HfApi(token=oauth_token.token) | |
| if api.repo_exists(new_repo_id) and not overwritte: | |
| raise Exception(f"Model {new_repo_id} already exist, please set overwritte=True to push on an existing repo") | |
| with TemporaryDirectory() as d: | |
| folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) | |
| os.makedirs(folder) | |
| try: | |
| api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"]) | |
| ov_model = eval(auto_model_class).from_pretrained( | |
| model_id, | |
| export=export, | |
| cache_dir=folder, | |
| token=oauth_token.token, | |
| quantization_config=quantization_config | |
| ) | |
| ov_model.save_pretrained(folder) | |
| new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo) | |
| new_repo_id = new_repo_url.repo_id | |
| print("Repo created successfully!", new_repo_url) | |
| folder = Path(folder) | |
| for dir_name in ( | |
| "", | |
| "vae_encoder", | |
| "vae_decoder", | |
| "text_encoder", | |
| "text_encoder_2", | |
| "unet", | |
| "tokenizer", | |
| "tokenizer_2", | |
| "scheduler", | |
| "feature_extractor", | |
| ): | |
| if not (folder / dir_name).is_dir(): | |
| continue | |
| for file_path in (folder / dir_name).iterdir(): | |
| if file_path.is_file(): | |
| try: | |
| api.upload_file( | |
| path_or_fileobj=file_path, | |
| path_in_repo=os.path.join(dir_name, file_path.name), | |
| repo_id=new_repo_id, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"Error uploading file {file_path}: {e}") | |
| try: | |
| card = ModelCard.load(model_id, token=oauth_token.token) | |
| except: | |
| card = ModelCard("") | |
| if card.data.tags is None: | |
| card.data.tags = [] | |
| card.data.tags.append("openvino") | |
| card.data.base_model = model_id | |
| card.text = dedent( | |
| f""" | |
| This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and was exported to the OpenVINO format using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space. | |
| First make sure you have optimum-intel installed: | |
| ```bash | |
| pip install optimum[openvino] | |
| ``` | |
| To load your model you can do as follows: | |
| ```python | |
| from optimum.intel import {auto_model_class} | |
| model_id = "{new_repo_id}" | |
| model = {auto_model_class}.from_pretrained(model_id) | |
| ``` | |
| """ | |
| ) | |
| card_path = os.path.join(folder, "README.md") | |
| card.save(card_path) | |
| api.upload_file( | |
| path_or_fileobj=card_path, | |
| path_in_repo="README.md", | |
| repo_id=new_repo_id, | |
| ) | |
| return f"This model was successfully quantized, find it under your repo {new_repo_url}'" | |
| finally: | |
| shutil.rmtree(folder, ignore_errors=True) | |
| DESCRIPTION = """ | |
| This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) to automatically apply NNCF weight only quantization on a model hosted on the [Hub](https://huggingface.co/models) and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already. | |
| The resulting model will then be pushed under your HF user namespace. For now we only support conversion for models that are hosted on public repositories. | |
| """ | |
| model_id = HuggingfaceHubSearch( | |
| label="Hub Model ID", | |
| placeholder="Search for model id on the hub", | |
| search_type="model", | |
| ) | |
| dtype = gr.Dropdown( | |
| ["int8", "int4"], | |
| value="int8", | |
| label="Precision data types", | |
| filterable=False, | |
| visible=True, | |
| ) | |
| """ | |
| quant_method = gr.Dropdown( | |
| ["default", "awq", "hybrid"], | |
| value="default", | |
| label="Quantization method", | |
| filterable=False, | |
| visible=True, | |
| ) | |
| """ | |
| calibration_dataset = gr.Dropdown( | |
| [ | |
| "wikitext2", | |
| "c4", | |
| "c4-new", | |
| "conceptual_captions", | |
| "laion/220k-GPT4Vision-captions-from-LIVIS", | |
| "laion/filtered-wit", | |
| ], | |
| value="wikitext2", | |
| label="Calibration dataset", | |
| filterable=False, | |
| visible=True, | |
| ) | |
| ratio = gr.Slider( | |
| label="Ratio", | |
| info="Parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| ) | |
| private_repo = gr.Checkbox( | |
| value=False, | |
| label="Private Repo", | |
| info="Create a private repo under your username", | |
| ) | |
| overwritte = gr.Checkbox( | |
| value=False, | |
| label="Overwrite repo content", | |
| info="Push files on existing repo potentially overwriting existing files", | |
| ) | |
| interface = gr.Interface( | |
| fn=quantize_model, | |
| inputs=[ | |
| model_id, | |
| dtype, | |
| calibration_dataset, | |
| ratio, | |
| private_repo, | |
| overwritte, | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="output"), | |
| ], | |
| title="Quantize your model with NNCF", | |
| description=DESCRIPTION, | |
| api_name=False, | |
| ) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("You must be logged in to use this space") | |
| gr.LoginButton(min_width=250) | |
| interface.render() | |
| demo.launch() | |