File size: 8,664 Bytes
9506213
 
 
 
 
 
e23b1fe
9506213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872b151
9506213
 
e23b1fe
 
9506213
e23b1fe
9506213
 
 
 
 
 
 
 
e23b1fe
d114365
872b151
 
d114365
9506213
 
 
 
 
 
 
 
 
 
0cbd808
 
 
9506213
 
da32672
 
 
 
 
 
 
 
 
e23b1fe
da32672
e23b1fe
da32672
 
e23b1fe
 
9506213
e23b1fe
 
 
9506213
 
 
872b151
9506213
 
 
e23b1fe
 
872b151
 
 
9506213
 
e23b1fe
9506213
 
 
e23b1fe
872b151
 
 
 
 
 
 
 
 
 
 
 
 
e23b1fe
872b151
 
 
 
 
 
 
 
 
 
9506213
 
 
 
 
 
 
 
 
 
 
 
0cbd808
9506213
 
 
 
 
 
 
 
 
 
 
 
3308672
9506213
 
 
 
 
 
 
 
 
 
 
 
0cbd808
9506213
 
 
 
d114365
 
 
 
 
 
0cbd808
 
 
 
 
 
 
 
 
 
 
 
da32672
e23b1fe
 
 
 
 
 
 
da32672
e23b1fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cbd808
 
 
 
 
e23b1fe
 
 
 
 
0cbd808
872b151
0cbd808
 
 
e23b1fe
 
0cbd808
e23b1fe
0cbd808
 
 
 
 
d114365
0cbd808
 
 
9506213
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import shutil
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from pathlib import Path

from tempfile import TemporaryDirectory

from huggingface_hub.file_download import repo_folder_name
from optimum.exporters.tasks import TasksManager
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS
from optimum.exporters import TasksManager

from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
    OVModelForAudioClassification,
    OVModelForCausalLM,
    OVModelForFeatureExtraction,
    OVModelForImageClassification,
    OVModelForMaskedLM,
    OVModelForQuestionAnswering,
    OVModelForSeq2SeqLM,
    OVModelForSequenceClassification,
    OVModelForTokenClassification,
    OVStableDiffusionPipeline,
    OVStableDiffusionXLPipeline,
    OVLatentConsistencyModelPipeline,
    OVModelForPix2Struct,
    OVWeightQuantizationConfig,
)

def quantize_model(
    model_id: str,
    dtype: str,
    calibration_dataset: str,
    ratio: str,
    private_repo: bool,
    overwritte: bool,
    oauth_token: gr.OAuthToken,
):
    if oauth_token.token is None:
        raise ValueError("You must be logged in to use this space")

    model_name = model_id.split("/")[-1]
    username = whoami(oauth_token.token)["name"]
    new_repo_id = f"{username}/{model_name}-openvino-{dtype}"
    task = TasksManager.infer_task_from_model(model_id)
    library_name = TasksManager.infer_library_from_model(model_id)
    # task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)
    # library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token)

    if task not in _HEAD_TO_AUTOMODELS:
        raise ValueError(
            f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
        )

    if task == "text2text-generation":
        raise ValueError("Export of Seq2Seq models is currently disabled.")

    auto_model_class = _HEAD_TO_AUTOMODELS[task]
    ov_files = _find_files_matching_pattern(
        model_id,
        pattern=r"(.*)?openvino(.*)?\_model.xml",
        use_auth_token=oauth_token.token,
    )
    export = len(ov_files) == 0

    is_int8 = dtype == "int8"
    if library_name == "diffusers":
        quant_method = "hybrid"
    elif not is_int8:
        quant_method = "awq"
    else:
        quant_method = "default"

    quantization_config = OVWeightQuantizationConfig(
        bits=8 if is_int8 else 4,
        quant_method=quant_method,
        dataset=None if quant_method=="default" else calibration_dataset,
        ratio=1.0 if is_int8 else ratio,
    )

    api = HfApi(token=oauth_token.token)
    if api.repo_exists(new_repo_id) and not overwritte:
        raise Exception(f"Model {new_repo_id} already exist, please set overwritte=True to push on an existing repo")

    with TemporaryDirectory() as d:
        folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
        os.makedirs(folder)

        try:
            api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
            ov_model = eval(auto_model_class).from_pretrained(
                model_id,
                export=export,
                cache_dir=folder,
                token=oauth_token.token,
                quantization_config=quantization_config
            )
            ov_model.save_pretrained(folder)
            new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
            new_repo_id = new_repo_url.repo_id
            print("Repo created successfully!", new_repo_url)

            folder = Path(folder)
            for dir_name in (
                "",
                "vae_encoder",
                "vae_decoder",
                "text_encoder",
                "text_encoder_2",
                "unet",
                "tokenizer",
                "tokenizer_2",
                "scheduler",
                "feature_extractor",
            ):
                if not (folder / dir_name).is_dir():
                    continue
                for file_path in (folder / dir_name).iterdir():
                    if file_path.is_file():
                        try:
                            api.upload_file(
                                path_or_fileobj=file_path,
                                path_in_repo=os.path.join(dir_name, file_path.name),
                                repo_id=new_repo_id,
                            )
                        except Exception as e:
                            raise Exception(f"Error uploading file {file_path}: {e}")

            try:
                card = ModelCard.load(model_id, token=oauth_token.token)
            except:
                card = ModelCard("")

            if card.data.tags is None:
                card.data.tags = []
            card.data.tags.append("openvino")
            card.data.base_model = model_id
            card.text = dedent(
                f"""
                This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and was exported to the OpenVINO format using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space.
                
                First make sure you have optimum-intel installed:

                ```bash
                pip install optimum[openvino]
                ```

                To load your model you can do as follows:

                ```python
                from optimum.intel import {auto_model_class}

                model_id = "{new_repo_id}"
                model = {auto_model_class}.from_pretrained(model_id)
                ```
                """
            )
            card_path = os.path.join(folder, "README.md")
            card.save(card_path)

            api.upload_file(
                path_or_fileobj=card_path,
                path_in_repo="README.md",
                repo_id=new_repo_id,
            )
            return f"This model was successfully quantized, find it under your repo {new_repo_url}'"
        finally:
            shutil.rmtree(folder, ignore_errors=True)


DESCRIPTION = """
This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) to automatically apply NNCF weight only quantization on a model hosted on the [Hub](https://huggingface.co/models) and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already.

The resulting model will then be pushed under your HF user namespace. For now we only support conversion for models that are hosted on public repositories.
"""

model_id = HuggingfaceHubSearch(
    label="Hub Model ID",
    placeholder="Search for model id on the hub",
    search_type="model",
)
dtype = gr.Dropdown(
    ["int8", "int4"],
    value="int8",
    label="Precision data types",
    filterable=False,
    visible=True,
)
"""
quant_method = gr.Dropdown(
    ["default", "awq", "hybrid"],
    value="default",
    label="Quantization method",
    filterable=False,
    visible=True,
)
"""
calibration_dataset = gr.Dropdown(
    [
        "wikitext2",
        "c4",
        "c4-new",
        "conceptual_captions",
        "laion/220k-GPT4Vision-captions-from-LIVIS",
        "laion/filtered-wit",
    ],
    value="wikitext2",
    label="Calibration dataset",
    filterable=False,
    visible=True,
)
ratio = gr.Slider(
    label="Ratio",
    info="Parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization",
    minimum=0.0,
    maximum=1.0,
    step=0.1,
    value=1.0,
)
private_repo = gr.Checkbox(
    value=False,
    label="Private Repo",
    info="Create a private repo under your username",
)
overwritte = gr.Checkbox(
    value=False,
    label="Overwrite repo content",
    info="Push files on existing repo potentially overwriting existing files",
)
interface = gr.Interface(
    fn=quantize_model,
    inputs=[
        model_id,
        dtype,
        calibration_dataset,
        ratio,
        private_repo,
        overwritte,
    ],
    outputs=[
        gr.Markdown(label="output"),
    ],
    title="Quantize your model with NNCF",
    description=DESCRIPTION,
    api_name=False,
)

with gr.Blocks() as demo:
    gr.Markdown("You must be logged in to use this space")
    gr.LoginButton(min_width=250)
    interface.render()

demo.launch()