VideoMamba / mamba /csrc /selective_scan /selective_scan_fwd_kernel.cuh
SakuraD's picture
init
29a3d5a
raw
history blame
19.2 kB
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_scan.cuh>
#include "selective_scan.h"
#include "selective_scan_common.h"
#include "static_switch.h"
template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
bool kIsVariableB_, bool kIsVariableC_,
bool kHasZ_, typename input_t_, typename weight_t_>
struct Selective_Scan_fwd_kernel_traits {
static_assert(kNItems_ % 4 == 0);
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
static constexpr int kNItems = kNItems_;
static constexpr int kNRows = kNRows_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
static_assert(kNItems % kNElts == 0);
static constexpr int kNLoads = kNItems / kNElts;
static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
static constexpr bool kIsEvenLen = kIsEvenLen_;
static constexpr bool kIsVariableB = kIsVariableB_;
static constexpr bool kIsVariableC = kIsVariableC_;
static constexpr bool kHasZ = kHasZ_;
static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads,
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2,
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads,
!kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage),
sizeof(typename BlockLoadVecT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
sizeof(typename BlockStoreT::TempStorage),
sizeof(typename BlockStoreVecT::TempStorage)});
static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage);
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
void selective_scan_fwd_kernel(SSMParamsBase params) {
constexpr bool kIsComplex = Ktraits::kIsComplex;
constexpr bool kIsVariableB = Ktraits::kIsVariableB;
constexpr bool kIsVariableC = Ktraits::kIsVariableC;
constexpr bool kHasZ = Ktraits::kHasZ;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNItems = Ktraits::kNItems;
constexpr int kNRows = Ktraits::kNRows;
constexpr bool kDirectIO = Ktraits::kDirectIO;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
using scan_t = typename Ktraits::scan_t;
// Shared memory.
extern __shared__ char smem_[];
// cast to lvalue reference of expected type
// char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
// weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ + smem_loadstorescan_size);
// weight_t *smem_bc = reinterpret_cast<weight_t *>(smem_a + MAX_DSTATE);
scan_t *smem_running_prefix = reinterpret_cast<scan_t *>(smem_ + Ktraits::kSmemSize);
const int batch_id = blockIdx.x;
const int dim_id = blockIdx.y;
const int group_id = dim_id / (params.dim_ngroups_ratio);
input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
+ dim_id * kNRows * params.u_d_stride;
input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
+ dim_id * kNRows * params.delta_d_stride;
weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * kNRows * params.A_d_stride;
weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * kNRows * params.B_d_stride;
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
scan_t *x = reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.n_chunks * params.dstate;
float D_val[kNRows] = {0};
if (params.D_ptr != nullptr) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
D_val[r] = reinterpret_cast<float *>(params.D_ptr)[dim_id * kNRows + r];
}
}
float delta_bias[kNRows] = {0};
if (params.delta_bias_ptr != nullptr) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
delta_bias[r] = reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id * kNRows + r];
}
}
// for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
// smem_a[state_idx] = A[state_idx * params.A_dstate_stride];
// smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] * C[state_idx * params.C_dstate_stride];
// }
constexpr int kChunkSize = kNThreads * kNItems;
for (int chunk = 0; chunk < params.n_chunks; ++chunk) {
input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems];
__syncthreads();
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
if constexpr (!kDirectIO) {
if (r > 0) { __syncthreads(); }
}
load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize);
if constexpr (!kDirectIO) { __syncthreads(); }
load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize);
}
u += kChunkSize;
delta += kChunkSize;
float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems];
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
float u_val = float(u_vals[r][i]);
delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r];
if (params.delta_softplus) {
delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i];
}
delta_u_vals[r][i] = delta_vals[r][i] * u_val;
out_vals[r][i] = D_val[r] * u_val;
}
}
__syncthreads();
for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
weight_t A_val[kNRows];
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride];
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
constexpr float kLog2e = M_LOG2E;
if constexpr (!kIsComplex) {
A_val[r] *= kLog2e;
} else {
A_val[r].real_ *= kLog2e;
}
}
// This variable holds B * C if both B and C are constant across seqlen. If only B varies
// across seqlen, this holds C. If only C varies across seqlen, this holds B.
// If both B and C vary, this is unused.
weight_t BC_val[kNRows];
weight_t B_vals[kNItems], C_vals[kNItems];
if constexpr (kIsVariableB) {
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
if constexpr (!kIsVariableC) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
}
}
}
if constexpr (kIsVariableC) {
auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
if constexpr (!kIsVariableB) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride];
}
}
}
if constexpr (!kIsVariableB && !kIsVariableC) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride] * C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
}
}
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
if (r > 0) { __syncthreads(); } // Scan could be using the same smem
scan_t thread_data[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
if constexpr (!kIsComplex) {
thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]),
!kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
thread_data[i] = make_float2(1.f, 0.f);
}
}
} else {
// Pytorch's implementation of complex exp (which calls thrust) is very slow
complex_t delta_a_exp = cexp2f(delta_vals[r][i] * A_val[r]);
weight_t B_delta_u_val = !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i];
thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
thread_data[i] = make_float4(1.f, 0.f, 0.f, 0.f);
}
}
}
}
// Initialize running total
scan_t running_prefix;
if constexpr (!kIsComplex) {
// If we use WARP_SCAN then all lane 0 of all warps (not just thread 0) needs to read
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.f, 0.f);
// running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float2(1.f, 0.f);
} else {
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float4(1.f, 0.f, 0.f, 0.f);
// running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
}
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
Ktraits::BlockScanT(smem_scan).InclusiveScan(
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
);
// There's a syncthreads in the scan op, so we don't need to sync here.
// Unless there's only 1 warp, but then it's the same thread (0) reading and writing.
if (threadIdx.x == 0) {
smem_running_prefix[state_idx] = prefix_op.running_prefix;
x[(r * params.n_chunks + chunk) * params.dstate + state_idx] = prefix_op.running_prefix;
}
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
const weight_t C_val = !kIsVariableC
? BC_val[r]
: (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]);
if constexpr (!kIsComplex) {
out_vals[r][i] += thread_data[i].y * C_val;
} else {
out_vals[r][i] += (complex_t(thread_data[i].z, thread_data[i].w) * C_val).real_ * 2;
}
}
}
}
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ dim_id * kNRows * params.out_d_stride + chunk * kChunkSize;
__syncthreads();
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
if constexpr (!kDirectIO) {
if (r > 0) { __syncthreads(); }
}
store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
}
if constexpr (kHasZ) {
input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
+ dim_id * kNRows * params.z_d_stride + chunk * kChunkSize;
input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
+ dim_id * kNRows * params.out_z_d_stride + chunk * kChunkSize;
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
input_t z_vals[kNItems];
__syncthreads();
load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
float z_val = z_vals[i];
out_vals[r][i] *= z_val / (1 + expf(-z_val));
}
__syncthreads();
store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
}
}
Bvar += kChunkSize * (!kIsComplex ? 1 : 2);
Cvar += kChunkSize * (!kIsComplex ? 1 : 2);
}
}
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
// Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
// processing 1 row.
constexpr int kNRows = 1;
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>;
// constexpr int kSmemSize = Ktraits::kSmemSize;
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
// printf("smem_size = %d\n", kSmemSize);
dim3 grid(params.batch, params.dim / kNRows);
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
});
});
}
template<typename input_t, typename weight_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream) {
if (params.seqlen <= 128) {
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 256) {
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
} else {
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
}
}