Spaces:
Running
on
Zero
Running
on
Zero
/****************************************************************************** | |
* Copyright (c) 2023, Tri Dao. | |
******************************************************************************/ | |
template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_, | |
bool kIsVariableB_, bool kIsVariableC_, | |
bool kHasZ_, typename input_t_, typename weight_t_> | |
struct Selective_Scan_fwd_kernel_traits { | |
static_assert(kNItems_ % 4 == 0); | |
using input_t = input_t_; | |
using weight_t = weight_t_; | |
static constexpr int kNThreads = kNThreads_; | |
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy. | |
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3; | |
static constexpr int kNItems = kNItems_; | |
static constexpr int kNRows = kNRows_; | |
static constexpr int kNBytes = sizeof(input_t); | |
static_assert(kNBytes == 2 || kNBytes == 4); | |
static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems); | |
static_assert(kNItems % kNElts == 0); | |
static constexpr int kNLoads = kNItems / kNElts; | |
static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>; | |
static constexpr bool kIsEvenLen = kIsEvenLen_; | |
static constexpr bool kIsVariableB = kIsVariableB_; | |
static constexpr bool kIsVariableC = kIsVariableC_; | |
static constexpr bool kHasZ = kHasZ_; | |
static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1; | |
using vec_t = typename BytesToType<kNBytes * kNElts>::Type; | |
using scan_t = std::conditional_t<!kIsComplex, float2, float4>; | |
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>; | |
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads, | |
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>; | |
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>; | |
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2, | |
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>; | |
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>; | |
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads, | |
!kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>; | |
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>; | |
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>; | |
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>; | |
static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage), | |
sizeof(typename BlockLoadVecT::TempStorage), | |
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage), | |
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage), | |
sizeof(typename BlockStoreT::TempStorage), | |
sizeof(typename BlockStoreVecT::TempStorage)}); | |
static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage); | |
}; | |
template<typename Ktraits> | |
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks) | |
void selective_scan_fwd_kernel(SSMParamsBase params) { | |
constexpr bool kIsComplex = Ktraits::kIsComplex; | |
constexpr bool kIsVariableB = Ktraits::kIsVariableB; | |
constexpr bool kIsVariableC = Ktraits::kIsVariableC; | |
constexpr bool kHasZ = Ktraits::kHasZ; | |
constexpr int kNThreads = Ktraits::kNThreads; | |
constexpr int kNItems = Ktraits::kNItems; | |
constexpr int kNRows = Ktraits::kNRows; | |
constexpr bool kDirectIO = Ktraits::kDirectIO; | |
using input_t = typename Ktraits::input_t; | |
using weight_t = typename Ktraits::weight_t; | |
using scan_t = typename Ktraits::scan_t; | |
// Shared memory. | |
extern __shared__ char smem_[]; | |
// cast to lvalue reference of expected type | |
// char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t); | |
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t)); | |
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan); | |
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_); | |
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_); | |
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage)); | |
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_); | |
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize); | |
// weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ + smem_loadstorescan_size); | |
// weight_t *smem_bc = reinterpret_cast<weight_t *>(smem_a + MAX_DSTATE); | |
scan_t *smem_running_prefix = reinterpret_cast<scan_t *>(smem_ + Ktraits::kSmemSize); | |
const int batch_id = blockIdx.x; | |
const int dim_id = blockIdx.y; | |
const int group_id = dim_id / (params.dim_ngroups_ratio); | |
input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride | |
+ dim_id * kNRows * params.u_d_stride; | |
input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride | |
+ dim_id * kNRows * params.delta_d_stride; | |
weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * kNRows * params.A_d_stride; | |
weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * kNRows * params.B_d_stride; | |
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride; | |
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride; | |
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride; | |
scan_t *x = reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.n_chunks * params.dstate; | |
float D_val[kNRows] = {0}; | |
if (params.D_ptr != nullptr) { | |
for (int r = 0; r < kNRows; ++r) { | |
D_val[r] = reinterpret_cast<float *>(params.D_ptr)[dim_id * kNRows + r]; | |
} | |
} | |
float delta_bias[kNRows] = {0}; | |
if (params.delta_bias_ptr != nullptr) { | |
for (int r = 0; r < kNRows; ++r) { | |
delta_bias[r] = reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id * kNRows + r]; | |
} | |
} | |
// for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) { | |
// smem_a[state_idx] = A[state_idx * params.A_dstate_stride]; | |
// smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] * C[state_idx * params.C_dstate_stride]; | |
// } | |
constexpr int kChunkSize = kNThreads * kNItems; | |
for (int chunk = 0; chunk < params.n_chunks; ++chunk) { | |
input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems]; | |
__syncthreads(); | |
for (int r = 0; r < kNRows; ++r) { | |
if constexpr (!kDirectIO) { | |
if (r > 0) { __syncthreads(); } | |
} | |
load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize); | |
if constexpr (!kDirectIO) { __syncthreads(); } | |
load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize); | |
} | |
u += kChunkSize; | |
delta += kChunkSize; | |
float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems]; | |
for (int r = 0; r < kNRows; ++r) { | |
for (int i = 0; i < kNItems; ++i) { | |
float u_val = float(u_vals[r][i]); | |
delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r]; | |
if (params.delta_softplus) { | |
delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i]; | |
} | |
delta_u_vals[r][i] = delta_vals[r][i] * u_val; | |
out_vals[r][i] = D_val[r] * u_val; | |
} | |
} | |
__syncthreads(); | |
for (int state_idx = 0; state_idx < params.dstate; ++state_idx) { | |
weight_t A_val[kNRows]; | |
for (int r = 0; r < kNRows; ++r) { | |
A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride]; | |
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf. | |
constexpr float kLog2e = M_LOG2E; | |
if constexpr (!kIsComplex) { | |
A_val[r] *= kLog2e; | |
} else { | |
A_val[r].real_ *= kLog2e; | |
} | |
} | |
// This variable holds B * C if both B and C are constant across seqlen. If only B varies | |
// across seqlen, this holds C. If only C varies across seqlen, this holds B. | |
// If both B and C vary, this is unused. | |
weight_t BC_val[kNRows]; | |
weight_t B_vals[kNItems], C_vals[kNItems]; | |
if constexpr (kIsVariableB) { | |
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals, | |
smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2)); | |
if constexpr (!kIsVariableC) { | |
for (int r = 0; r < kNRows; ++r) { | |
BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride]; | |
} | |
} | |
} | |
if constexpr (kIsVariableC) { | |
auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1; | |
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals, | |
smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2)); | |
if constexpr (!kIsVariableB) { | |
for (int r = 0; r < kNRows; ++r) { | |
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride]; | |
} | |
} | |
} | |
if constexpr (!kIsVariableB && !kIsVariableC) { | |
for (int r = 0; r < kNRows; ++r) { | |
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride] * C[state_idx * params.C_dstate_stride + r * params.C_d_stride]; | |
} | |
} | |
for (int r = 0; r < kNRows; ++r) { | |
if (r > 0) { __syncthreads(); } // Scan could be using the same smem | |
scan_t thread_data[kNItems]; | |
for (int i = 0; i < kNItems; ++i) { | |
if constexpr (!kIsComplex) { | |
thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]), | |
!kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]); | |
if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct | |
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) { | |
thread_data[i] = make_float2(1.f, 0.f); | |
} | |
} | |
} else { | |
// Pytorch's implementation of complex exp (which calls thrust) is very slow | |
complex_t delta_a_exp = cexp2f(delta_vals[r][i] * A_val[r]); | |
weight_t B_delta_u_val = !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]; | |
thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_); | |
if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct | |
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) { | |
thread_data[i] = make_float4(1.f, 0.f, 0.f, 0.f); | |
} | |
} | |
} | |
} | |
// Initialize running total | |
scan_t running_prefix; | |
if constexpr (!kIsComplex) { | |
// If we use WARP_SCAN then all lane 0 of all warps (not just thread 0) needs to read | |
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.f, 0.f); | |
// running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float2(1.f, 0.f); | |
} else { | |
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float4(1.f, 0.f, 0.f, 0.f); | |
// running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f); | |
} | |
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix); | |
Ktraits::BlockScanT(smem_scan).InclusiveScan( | |
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op | |
); | |
// There's a syncthreads in the scan op, so we don't need to sync here. | |
// Unless there's only 1 warp, but then it's the same thread (0) reading and writing. | |
if (threadIdx.x == 0) { | |
smem_running_prefix[state_idx] = prefix_op.running_prefix; | |
x[(r * params.n_chunks + chunk) * params.dstate + state_idx] = prefix_op.running_prefix; | |
} | |
for (int i = 0; i < kNItems; ++i) { | |
const weight_t C_val = !kIsVariableC | |
? BC_val[r] | |
: (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]); | |
if constexpr (!kIsComplex) { | |
out_vals[r][i] += thread_data[i].y * C_val; | |
} else { | |
out_vals[r][i] += (complex_t(thread_data[i].z, thread_data[i].w) * C_val).real_ * 2; | |
} | |
} | |
} | |
} | |
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride | |
+ dim_id * kNRows * params.out_d_stride + chunk * kChunkSize; | |
__syncthreads(); | |
for (int r = 0; r < kNRows; ++r) { | |
if constexpr (!kDirectIO) { | |
if (r > 0) { __syncthreads(); } | |
} | |
store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize); | |
} | |
if constexpr (kHasZ) { | |
input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride | |
+ dim_id * kNRows * params.z_d_stride + chunk * kChunkSize; | |
input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride | |
+ dim_id * kNRows * params.out_z_d_stride + chunk * kChunkSize; | |
for (int r = 0; r < kNRows; ++r) { | |
input_t z_vals[kNItems]; | |
__syncthreads(); | |
load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize); | |
for (int i = 0; i < kNItems; ++i) { | |
float z_val = z_vals[i]; | |
out_vals[r][i] *= z_val / (1 + expf(-z_val)); | |
} | |
__syncthreads(); | |
store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize); | |
} | |
} | |
Bvar += kChunkSize * (!kIsComplex ? 1 : 2); | |
Cvar += kChunkSize * (!kIsComplex ? 1 : 2); | |
} | |
} | |
template<int kNThreads, int kNItems, typename input_t, typename weight_t> | |
void selective_scan_fwd_launch(SSMParamsBase ¶ms, cudaStream_t stream) { | |
// Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block | |
// processing 1 row. | |
constexpr int kNRows = 1; | |
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] { | |
BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] { | |
BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] { | |
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] { | |
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>; | |
// constexpr int kSmemSize = Ktraits::kSmemSize; | |
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t); | |
// printf("smem_size = %d\n", kSmemSize); | |
dim3 grid(params.batch, params.dim / kNRows); | |
auto kernel = &selective_scan_fwd_kernel<Ktraits>; | |
if (kSmemSize >= 48 * 1024) { | |
C10_CUDA_CHECK(cudaFuncSetAttribute( | |
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); | |
} | |
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params); | |
C10_CUDA_KERNEL_LAUNCH_CHECK(); | |
}); | |
}); | |
}); | |
}); | |
} | |
template<typename input_t, typename weight_t> | |
void selective_scan_fwd_cuda(SSMParamsBase ¶ms, cudaStream_t stream) { | |
if (params.seqlen <= 128) { | |
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream); | |
} else if (params.seqlen <= 256) { | |
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream); | |
} else if (params.seqlen <= 512) { | |
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream); | |
} else if (params.seqlen <= 1024) { | |
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream); | |
} else { | |
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream); | |
} | |
} | |