File size: 19,247 Bytes
29a3d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h>  // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK

#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_scan.cuh>

#include "selective_scan.h"
#include "selective_scan_common.h"
#include "static_switch.h"

template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
         bool kIsVariableB_, bool kIsVariableC_,
         bool kHasZ_, typename input_t_, typename weight_t_>
struct Selective_Scan_fwd_kernel_traits {
    static_assert(kNItems_ % 4 == 0);
    using input_t = input_t_;
    using weight_t = weight_t_;
    static constexpr int kNThreads = kNThreads_;
    // Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
    static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
    static constexpr int kNItems = kNItems_;
    static constexpr int kNRows = kNRows_;
    static constexpr int kNBytes = sizeof(input_t);
    static_assert(kNBytes == 2 || kNBytes == 4);
    static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
    static_assert(kNItems % kNElts == 0);
    static constexpr int kNLoads = kNItems / kNElts;
    static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
    static constexpr bool kIsEvenLen = kIsEvenLen_;
    static constexpr bool kIsVariableB = kIsVariableB_;
    static constexpr bool kIsVariableC = kIsVariableC_;
    static constexpr bool kHasZ = kHasZ_;

    static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1;

    using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
    using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
    using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
    using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads,
        !kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
    using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
    using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2,
        !kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE  : cub::BLOCK_LOAD_DIRECT>;
    using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
    using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads,
        !kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>;
    // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
    // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
    using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
    static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage),
                                                 sizeof(typename BlockLoadVecT::TempStorage),
                                                 (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
                                                 (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
                                                 sizeof(typename BlockStoreT::TempStorage),
                                                 sizeof(typename BlockStoreVecT::TempStorage)});
    static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage);
};

template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
void selective_scan_fwd_kernel(SSMParamsBase params) {
    constexpr bool kIsComplex = Ktraits::kIsComplex;
    constexpr bool kIsVariableB = Ktraits::kIsVariableB;
    constexpr bool kIsVariableC = Ktraits::kIsVariableC;
    constexpr bool kHasZ = Ktraits::kHasZ;
    constexpr int kNThreads = Ktraits::kNThreads;
    constexpr int kNItems = Ktraits::kNItems;
    constexpr int kNRows = Ktraits::kNRows;
    constexpr bool kDirectIO = Ktraits::kDirectIO;
    using input_t = typename Ktraits::input_t;
    using weight_t = typename Ktraits::weight_t;
    using scan_t = typename Ktraits::scan_t;

    // Shared memory.
    extern __shared__ char smem_[];
    // cast to lvalue reference of expected type
    // char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
    // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
    // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
    auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
    auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
    auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
    auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
    auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
    // weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ + smem_loadstorescan_size);
    // weight_t *smem_bc = reinterpret_cast<weight_t *>(smem_a + MAX_DSTATE);
    scan_t *smem_running_prefix = reinterpret_cast<scan_t *>(smem_ + Ktraits::kSmemSize);

    const int batch_id = blockIdx.x;
    const int dim_id = blockIdx.y;
    const int group_id = dim_id / (params.dim_ngroups_ratio);
    input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
        + dim_id * kNRows * params.u_d_stride;
    input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
        + dim_id * kNRows * params.delta_d_stride;
    weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * kNRows * params.A_d_stride;
    weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * kNRows * params.B_d_stride;
    input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
    weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
    input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
    scan_t *x = reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.n_chunks * params.dstate;

    float D_val[kNRows] = {0};
    if (params.D_ptr != nullptr) {
        #pragma unroll
        for (int r = 0; r < kNRows; ++r) {
            D_val[r] = reinterpret_cast<float *>(params.D_ptr)[dim_id * kNRows + r];
        }
    }
    float delta_bias[kNRows] = {0};
    if (params.delta_bias_ptr != nullptr) {
        #pragma unroll
        for (int r = 0; r < kNRows; ++r) {
            delta_bias[r] = reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id * kNRows + r];
        }
    }

    // for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
    //     smem_a[state_idx] = A[state_idx * params.A_dstate_stride];
    //     smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] * C[state_idx * params.C_dstate_stride];
    // }

    constexpr int kChunkSize = kNThreads * kNItems;
    for (int chunk = 0; chunk < params.n_chunks; ++chunk) {
        input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems];
        __syncthreads();
        #pragma unroll
        for (int r = 0; r < kNRows; ++r) {
            if constexpr (!kDirectIO) {
                if (r > 0) { __syncthreads(); }
            }
            load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize);
            if constexpr (!kDirectIO) { __syncthreads(); }
            load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize);
        }
        u += kChunkSize;
        delta += kChunkSize;

        float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems];
        #pragma unroll
        for (int r = 0; r < kNRows; ++r) {
            #pragma unroll
            for (int i = 0; i < kNItems; ++i) {
                float u_val = float(u_vals[r][i]);
                delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r];
                if (params.delta_softplus) {
                    delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i];
                }
                delta_u_vals[r][i] = delta_vals[r][i] * u_val;
                out_vals[r][i] = D_val[r] * u_val;
            }
        }

        __syncthreads();
        for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
            weight_t A_val[kNRows];
            #pragma unroll
            for (int r = 0; r < kNRows; ++r) {
                A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride];
                // Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
                constexpr float kLog2e = M_LOG2E;
                if constexpr (!kIsComplex) {
                    A_val[r] *= kLog2e;
                } else {
                    A_val[r].real_ *= kLog2e;
                }
            }
            // This variable holds B * C if both B and C are constant across seqlen. If only B varies
            // across seqlen, this holds C. If only C varies across seqlen, this holds B.
            // If both B and C vary, this is unused.
            weight_t BC_val[kNRows];
            weight_t B_vals[kNItems], C_vals[kNItems];
            if constexpr (kIsVariableB) {
                load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
                    smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
                if constexpr (!kIsVariableC) {
                    #pragma unroll
                    for (int r = 0; r < kNRows; ++r) {
                        BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
                    }
                }
            }
            if constexpr (kIsVariableC) {
                auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
                load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
                    smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
                if constexpr (!kIsVariableB) {
                    #pragma unroll
                    for (int r = 0; r < kNRows; ++r) {
                        BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride];
                    }
                }
            }
            if constexpr (!kIsVariableB && !kIsVariableC) {
                #pragma unroll
                for (int r = 0; r < kNRows; ++r) {
                    BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride] * C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
                }
            }

            #pragma unroll
            for (int r = 0; r < kNRows; ++r) {
                if (r > 0) { __syncthreads(); }  // Scan could be using the same smem
                scan_t thread_data[kNItems];
                #pragma unroll
                for (int i = 0; i < kNItems; ++i) {
                    if constexpr (!kIsComplex) {
                        thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]),
                                                     !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
                        if constexpr (!Ktraits::kIsEvenLen) {  // So that the last state is correct
                            if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
                                thread_data[i] = make_float2(1.f, 0.f);
                            }
                        }
                    } else {
                        // Pytorch's implementation of complex exp (which calls thrust) is very slow
                        complex_t delta_a_exp = cexp2f(delta_vals[r][i] * A_val[r]);
                        weight_t B_delta_u_val = !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i];
                        thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
                        if constexpr (!Ktraits::kIsEvenLen) {  // So that the last state is correct
                            if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
                                thread_data[i] = make_float4(1.f, 0.f, 0.f, 0.f);
                            }
                        }
                    }
                }
                // Initialize running total
                scan_t running_prefix;
                if constexpr (!kIsComplex) {
                    // If we use WARP_SCAN then all lane 0 of all warps (not just thread 0) needs to read
                    running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.f, 0.f);
                    // running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float2(1.f, 0.f);
                } else {
                    running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float4(1.f, 0.f, 0.f, 0.f);
                    // running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
                }
                SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
                Ktraits::BlockScanT(smem_scan).InclusiveScan(
                    thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
                );
                // There's a syncthreads in the scan op, so we don't need to sync here.
                // Unless there's only 1 warp, but then it's the same thread (0) reading and writing.
                if (threadIdx.x == 0) {
                    smem_running_prefix[state_idx] = prefix_op.running_prefix;
                    x[(r * params.n_chunks + chunk) * params.dstate + state_idx] = prefix_op.running_prefix;
                }
                #pragma unroll
                for (int i = 0; i < kNItems; ++i) {
                    const weight_t C_val = !kIsVariableC
                        ? BC_val[r]
                        : (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]);
                    if constexpr (!kIsComplex) {
                        out_vals[r][i] += thread_data[i].y * C_val;
                    } else {
                        out_vals[r][i] += (complex_t(thread_data[i].z, thread_data[i].w) * C_val).real_ * 2;
                    }
                }
            }
        }

        input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
            + dim_id * kNRows * params.out_d_stride + chunk * kChunkSize;
        __syncthreads();
        #pragma unroll
        for (int r = 0; r < kNRows; ++r) {
            if constexpr (!kDirectIO) {
                if (r > 0) { __syncthreads(); }
            }
            store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
        }

        if constexpr (kHasZ) {
            input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
                + dim_id * kNRows * params.z_d_stride + chunk * kChunkSize;
            input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
                + dim_id * kNRows * params.out_z_d_stride + chunk * kChunkSize;
            #pragma unroll
            for (int r = 0; r < kNRows; ++r) {
                input_t z_vals[kNItems];
                __syncthreads();
                load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
                #pragma unroll
                for (int i = 0; i < kNItems; ++i) {
                    float z_val = z_vals[i];
                    out_vals[r][i] *= z_val / (1 + expf(-z_val));
                }
                __syncthreads();
                store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
            }
        }

        Bvar += kChunkSize * (!kIsComplex ? 1 : 2);
        Cvar += kChunkSize * (!kIsComplex ? 1 : 2);
    }
}

template<int kNThreads, int kNItems, typename input_t, typename weight_t>
void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
    // Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
    // processing 1 row.
    constexpr int kNRows = 1;
    BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
        BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
            BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
                BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
                    using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>;
                    // constexpr int kSmemSize = Ktraits::kSmemSize;
                    constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
                    // printf("smem_size = %d\n", kSmemSize);
                    dim3 grid(params.batch, params.dim / kNRows);
                    auto kernel = &selective_scan_fwd_kernel<Ktraits>;
                    if (kSmemSize >= 48 * 1024) {
                        C10_CUDA_CHECK(cudaFuncSetAttribute(
                            kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
                    }
                    kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
                    C10_CUDA_KERNEL_LAUNCH_CHECK();
                });
            });
        });
    });
}

template<typename input_t, typename weight_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream) {
    if (params.seqlen <= 128) {
        selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
    } else if (params.seqlen <= 256) {
        selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
    } else if (params.seqlen <= 512) {
        selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
    } else if (params.seqlen <= 1024) {
        selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
    } else {
        selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
    }
}