File size: 6,128 Bytes
4b1adc0
5505221
4b1adc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee58802
4b1adc0
eb0ec74
4b1adc0
 
 
 
eb0ec74
4b1adc0
eb0ec74
4b1adc0
eb0ec74
4b1adc0
eb0ec74
4b1adc0
 
eb0ec74
4b1adc0
 
eb0ec74
4b1adc0
ee58802
 
 
eb0ec74
ee58802
 
 
 
 
 
 
 
 
 
 
 
 
eb0ec74
 
 
ee58802
 
eb0ec74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
# # 
# # This space is created by SANJOG GHONGE for testing and learning purpose.
# #
# # If you want to remove this space or credits please contact me on my email id [[email protected]].
# #
# # Citation : @misc{qvq-72b-preview,
# #               title = {QVQ: To See the World with Wisdom},
# #               url = {https://qwenlm.github.io/blog/qvq-72b-preview/},
# #               author = {Qwen Team},
# #               month = {December},
# #               year = {2024}
# #                  }

# #           @article{Qwen2VL,
# #               title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
# #               author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, 
# #               Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, 
# #               Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, 
# #               Jingren and Lin, Junyang},
# #               journal={arXiv preprint arXiv:2409.12191},
# #               year={2024}
# #                   }
# #
# # -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

# from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
# from qwen_vl_utils import process_vision_info
# import gradio as gr
# from PIL import Image

# # Load the model and processor
# model = Qwen2VLForConditionalGeneration.from_pretrained(
#     "Qwen/QVQ-72B-Preview", torch_dtype="auto", device_map="auto"
# )
# processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")

# # Function to process the image and question
# def process_image_and_question(image, question):
#     if image is None or question.strip() == "":
#         return "Please provide both an image and a question."

#     # Prepare the input message
#     messages = [
#         {
#             "role": "system",
#             "content": [
#                 {"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
#             ],
#         },
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "image": image},
#                 {"type": "text", "text": question},
#             ],
#         }
#     ]

#     # Process the inputs
#     text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
#     image_inputs, video_inputs = process_vision_info(messages)

#     inputs = processor(
#         text=[text],
#         images=image_inputs,
#         videos=video_inputs,
#         padding=True,
#         return_tensors="pt",
#     )
#     inputs = inputs.to("cuda")

#     # Generate the output
#     generated_ids = model.generate(**inputs, max_new_tokens=8192)
#     generated_ids_trimmed = [
#         out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
#     ]
#     output_text = processor.batch_decode(
#         generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
#     )
    
#     return output_text[0] if output_text else "No output generated."

# # Define the Gradio interface
# with gr.Blocks() as demo:
#     gr.Markdown("# Image and Question Answering\nProvide an image (JPG/PNG) and a related question to get an answer.")

#     with gr.Row():
#         with gr.Column():
#             image_input = gr.Image(type="pil", label="Upload Image (JPG/PNG)")
#             question_input = gr.Textbox(label="Enter your question")

#         with gr.Column():
#             output_box = gr.Textbox(label="Result", interactive=False)

#     with gr.Row():
#         clear_button = gr.Button("Clear")
#         submit_button = gr.Button("Submit")

#     # Define button functionality
#     clear_button.click(lambda: (None, "", ""), inputs=[], outputs=[image_input, question_input, output_box])
#     submit_button.click(process_image_and_question, inputs=[image_input, question_input], outputs=output_box)

# # Launch the interface
# demo.launch()


# ------------------------------------------------------------------------------------------------------------------------------------



import gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText

# Load the processor and model
model_name = "Qwen/QVQ-72B-Preview"
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForImageTextToText.from_pretrained(model_name)

# Define the prediction function
def process_image_and_question(image, question):
    if image is None or not question:
        return "Please provide both an image and a question."
    
    # Process the inputs
    inputs = processor(images=image, text=question, return_tensors="pt")
    
    # Generate the output
    outputs = model.generate(**inputs)
    answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
    
    return answer

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image and Question Answering\nProvide an image (JPG/PNG) and a related question to get an answer.")

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil", label="Upload Image (JPG/PNG)")
            question_input = gr.Textbox(label="Enter your question")

        with gr.Column():
            output_box = gr.Textbox(label="Result", interactive=False)

    with gr.Row():
        clear_button = gr.Button("Clear")
        submit_button = gr.Button("Submit")

    # Define button functionality
    clear_button.click(lambda: (None, "", ""), inputs=[], outputs=[image_input, question_input, output_box])
    submit_button.click(process_image_and_question, inputs=[image_input, question_input], outputs=output_box)

# Launch the interface
demo.launch()