Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,85 +1,135 @@
|
|
| 1 |
-
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
| 2 |
-
#
|
| 3 |
-
# This space is created by SANJOG GHONGE for testing and learning purpose.
|
| 4 |
-
#
|
| 5 |
-
# If you want to remove this space or credits please contact me on my email id [[email protected]].
|
| 6 |
-
#
|
| 7 |
-
# Citation : @misc{qvq-72b-preview,
|
| 8 |
-
# title = {QVQ: To See the World with Wisdom},
|
| 9 |
-
# url = {https://qwenlm.github.io/blog/qvq-72b-preview/},
|
| 10 |
-
# author = {Qwen Team},
|
| 11 |
-
# month = {December},
|
| 12 |
-
# year = {2024}
|
| 13 |
-
# }
|
| 14 |
-
|
| 15 |
-
# @article{Qwen2VL,
|
| 16 |
-
# title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
|
| 17 |
-
# author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai,
|
| 18 |
-
# Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang,
|
| 19 |
-
# Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou,
|
| 20 |
-
# Jingren and Lin, Junyang},
|
| 21 |
-
# journal={arXiv preprint arXiv:2409.12191},
|
| 22 |
-
# year={2024}
|
| 23 |
-
# }
|
| 24 |
-
#
|
| 25 |
-
# -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
| 26 |
-
|
| 27 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 28 |
-
from qwen_vl_utils import process_vision_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
import gradio as gr
|
| 30 |
-
from
|
| 31 |
|
| 32 |
-
# Load the
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
)
|
| 36 |
-
processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
|
| 37 |
|
| 38 |
-
#
|
| 39 |
def process_image_and_question(image, question):
|
| 40 |
-
if image is None or question
|
| 41 |
return "Please provide both an image and a question."
|
| 42 |
-
|
| 43 |
-
# Prepare the input message
|
| 44 |
-
messages = [
|
| 45 |
-
{
|
| 46 |
-
"role": "system",
|
| 47 |
-
"content": [
|
| 48 |
-
{"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
|
| 49 |
-
],
|
| 50 |
-
},
|
| 51 |
-
{
|
| 52 |
-
"role": "user",
|
| 53 |
-
"content": [
|
| 54 |
-
{"type": "image", "image": image},
|
| 55 |
-
{"type": "text", "text": question},
|
| 56 |
-
],
|
| 57 |
-
}
|
| 58 |
-
]
|
| 59 |
-
|
| 60 |
# Process the inputs
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
inputs = processor(
|
| 65 |
-
text=[text],
|
| 66 |
-
images=image_inputs,
|
| 67 |
-
videos=video_inputs,
|
| 68 |
-
padding=True,
|
| 69 |
-
return_tensors="pt",
|
| 70 |
-
)
|
| 71 |
-
inputs = inputs.to("cuda")
|
| 72 |
-
|
| 73 |
# Generate the output
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 77 |
-
]
|
| 78 |
-
output_text = processor.batch_decode(
|
| 79 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 80 |
-
)
|
| 81 |
|
| 82 |
-
return
|
| 83 |
|
| 84 |
# Define the Gradio interface
|
| 85 |
with gr.Blocks() as demo:
|
|
@@ -103,5 +153,3 @@ with gr.Blocks() as demo:
|
|
| 103 |
|
| 104 |
# Launch the interface
|
| 105 |
demo.launch()
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 1 |
+
# # ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
| 2 |
+
# #
|
| 3 |
+
# # This space is created by SANJOG GHONGE for testing and learning purpose.
|
| 4 |
+
# #
|
| 5 |
+
# # If you want to remove this space or credits please contact me on my email id [[email protected]].
|
| 6 |
+
# #
|
| 7 |
+
# # Citation : @misc{qvq-72b-preview,
|
| 8 |
+
# # title = {QVQ: To See the World with Wisdom},
|
| 9 |
+
# # url = {https://qwenlm.github.io/blog/qvq-72b-preview/},
|
| 10 |
+
# # author = {Qwen Team},
|
| 11 |
+
# # month = {December},
|
| 12 |
+
# # year = {2024}
|
| 13 |
+
# # }
|
| 14 |
+
|
| 15 |
+
# # @article{Qwen2VL,
|
| 16 |
+
# # title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
|
| 17 |
+
# # author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai,
|
| 18 |
+
# # Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang,
|
| 19 |
+
# # Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou,
|
| 20 |
+
# # Jingren and Lin, Junyang},
|
| 21 |
+
# # journal={arXiv preprint arXiv:2409.12191},
|
| 22 |
+
# # year={2024}
|
| 23 |
+
# # }
|
| 24 |
+
# #
|
| 25 |
+
# # -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
| 26 |
+
|
| 27 |
+
# from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 28 |
+
# from qwen_vl_utils import process_vision_info
|
| 29 |
+
# import gradio as gr
|
| 30 |
+
# from PIL import Image
|
| 31 |
+
|
| 32 |
+
# # Load the model and processor
|
| 33 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 34 |
+
# "Qwen/QVQ-72B-Preview", torch_dtype="auto", device_map="auto"
|
| 35 |
+
# )
|
| 36 |
+
# processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
|
| 37 |
+
|
| 38 |
+
# # Function to process the image and question
|
| 39 |
+
# def process_image_and_question(image, question):
|
| 40 |
+
# if image is None or question.strip() == "":
|
| 41 |
+
# return "Please provide both an image and a question."
|
| 42 |
+
|
| 43 |
+
# # Prepare the input message
|
| 44 |
+
# messages = [
|
| 45 |
+
# {
|
| 46 |
+
# "role": "system",
|
| 47 |
+
# "content": [
|
| 48 |
+
# {"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
|
| 49 |
+
# ],
|
| 50 |
+
# },
|
| 51 |
+
# {
|
| 52 |
+
# "role": "user",
|
| 53 |
+
# "content": [
|
| 54 |
+
# {"type": "image", "image": image},
|
| 55 |
+
# {"type": "text", "text": question},
|
| 56 |
+
# ],
|
| 57 |
+
# }
|
| 58 |
+
# ]
|
| 59 |
+
|
| 60 |
+
# # Process the inputs
|
| 61 |
+
# text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 62 |
+
# image_inputs, video_inputs = process_vision_info(messages)
|
| 63 |
+
|
| 64 |
+
# inputs = processor(
|
| 65 |
+
# text=[text],
|
| 66 |
+
# images=image_inputs,
|
| 67 |
+
# videos=video_inputs,
|
| 68 |
+
# padding=True,
|
| 69 |
+
# return_tensors="pt",
|
| 70 |
+
# )
|
| 71 |
+
# inputs = inputs.to("cuda")
|
| 72 |
+
|
| 73 |
+
# # Generate the output
|
| 74 |
+
# generated_ids = model.generate(**inputs, max_new_tokens=8192)
|
| 75 |
+
# generated_ids_trimmed = [
|
| 76 |
+
# out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 77 |
+
# ]
|
| 78 |
+
# output_text = processor.batch_decode(
|
| 79 |
+
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 80 |
+
# )
|
| 81 |
+
|
| 82 |
+
# return output_text[0] if output_text else "No output generated."
|
| 83 |
+
|
| 84 |
+
# # Define the Gradio interface
|
| 85 |
+
# with gr.Blocks() as demo:
|
| 86 |
+
# gr.Markdown("# Image and Question Answering\nProvide an image (JPG/PNG) and a related question to get an answer.")
|
| 87 |
+
|
| 88 |
+
# with gr.Row():
|
| 89 |
+
# with gr.Column():
|
| 90 |
+
# image_input = gr.Image(type="pil", label="Upload Image (JPG/PNG)")
|
| 91 |
+
# question_input = gr.Textbox(label="Enter your question")
|
| 92 |
+
|
| 93 |
+
# with gr.Column():
|
| 94 |
+
# output_box = gr.Textbox(label="Result", interactive=False)
|
| 95 |
+
|
| 96 |
+
# with gr.Row():
|
| 97 |
+
# clear_button = gr.Button("Clear")
|
| 98 |
+
# submit_button = gr.Button("Submit")
|
| 99 |
+
|
| 100 |
+
# # Define button functionality
|
| 101 |
+
# clear_button.click(lambda: (None, "", ""), inputs=[], outputs=[image_input, question_input, output_box])
|
| 102 |
+
# submit_button.click(process_image_and_question, inputs=[image_input, question_input], outputs=output_box)
|
| 103 |
+
|
| 104 |
+
# # Launch the interface
|
| 105 |
+
# demo.launch()
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# ------------------------------------------------------------------------------------------------------------------------------------
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
import gradio as gr
|
| 113 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 114 |
|
| 115 |
+
# Load the processor and model
|
| 116 |
+
model_name = "Qwen/QVQ-72B-Preview"
|
| 117 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 118 |
+
model = AutoModelForImageTextToText.from_pretrained(model_name)
|
|
|
|
| 119 |
|
| 120 |
+
# Define the prediction function
|
| 121 |
def process_image_and_question(image, question):
|
| 122 |
+
if image is None or not question:
|
| 123 |
return "Please provide both an image and a question."
|
| 124 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
# Process the inputs
|
| 126 |
+
inputs = processor(images=image, text=question, return_tensors="pt")
|
| 127 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
# Generate the output
|
| 129 |
+
outputs = model.generate(**inputs)
|
| 130 |
+
answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
return answer
|
| 133 |
|
| 134 |
# Define the Gradio interface
|
| 135 |
with gr.Blocks() as demo:
|
|
|
|
| 153 |
|
| 154 |
# Launch the interface
|
| 155 |
demo.launch()
|
|
|
|
|
|