|
import gradio as gr |
|
import torch |
|
import os |
|
import shutil |
|
import requests |
|
import subprocess |
|
from subprocess import getoutput |
|
from huggingface_hub import snapshot_download, HfApi, create_repo |
|
api = HfApi() |
|
|
|
hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION") |
|
|
|
is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False |
|
|
|
is_gpu_associated = torch.cuda.is_available() |
|
|
|
if is_gpu_associated: |
|
gpu_info = getoutput('nvidia-smi') |
|
if("A10G" in gpu_info): |
|
which_gpu = "A10G" |
|
elif("T4" in gpu_info): |
|
which_gpu = "T4" |
|
else: |
|
which_gpu = "CPU" |
|
|
|
def load_images_to_dataset(images, dataset_name): |
|
|
|
if dataset_name == "": |
|
raise gr.Error("You forgot to name your new dataset. ") |
|
|
|
|
|
my_working_directory = f"my_working_directory_for_{dataset_name}" |
|
if not os.path.exists(my_working_directory): |
|
os.makedirs(my_working_directory) |
|
|
|
|
|
for idx, image in enumerate(images): |
|
|
|
image_name = os.path.basename(image.name) |
|
|
|
|
|
destination_path = os.path.join(my_working_directory, image_name) |
|
|
|
|
|
shutil.copy(image.name, destination_path) |
|
|
|
|
|
print(f"Image {idx + 1}: {image_name} copied to {destination_path}") |
|
|
|
path_to_folder = my_working_directory |
|
your_username = api.whoami(token=hf_token)["name"] |
|
repo_id = f"{your_username}/{dataset_name}" |
|
create_repo(repo_id=repo_id, repo_type="dataset", private=True, token=hf_token) |
|
|
|
api.upload_folder( |
|
folder_path=path_to_folder, |
|
repo_id=repo_id, |
|
repo_type="dataset", |
|
token=hf_token |
|
) |
|
|
|
return "Done, your dataset is ready and loaded for the training step!", repo_id |
|
|
|
def swap_hardware(hf_token, hardware="cpu-basic"): |
|
hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware" |
|
headers = { "authorization" : f"Bearer {hf_token}"} |
|
body = {'flavor': hardware} |
|
requests.post(hardware_url, json = body, headers=headers) |
|
|
|
def swap_sleep_time(hf_token,sleep_time): |
|
sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}/sleeptime" |
|
headers = { "authorization" : f"Bearer {hf_token}"} |
|
body = {'seconds':sleep_time} |
|
requests.post(sleep_time_url,json=body,headers=headers) |
|
|
|
def get_sleep_time(hf_token): |
|
sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}" |
|
headers = { "authorization" : f"Bearer {hf_token}"} |
|
response = requests.get(sleep_time_url,headers=headers) |
|
try: |
|
gcTimeout = response.json()['runtime']['gcTimeout'] |
|
except: |
|
gcTimeout = None |
|
return gcTimeout |
|
|
|
def write_to_community(title, description,hf_token): |
|
|
|
api.create_discussion(repo_id=os.environ['SPACE_ID'], title=title, description=description,repo_type="space", token=hf_token) |
|
|
|
|
|
def set_accelerate_default_config(): |
|
try: |
|
subprocess.run(["accelerate", "config", "default"], check=True) |
|
print("Accelerate default config set successfully!") |
|
except subprocess.CalledProcessError as e: |
|
print(f"An error occurred: {e}") |
|
|
|
def train_dreambooth_lora_sdxl(dataset_id, instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu): |
|
|
|
script_filename = "train_dreambooth_lora_sdxl.py" |
|
|
|
command = [ |
|
"accelerate", |
|
"launch", |
|
script_filename, |
|
"--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0", |
|
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix", |
|
f"--dataset_id={dataset_id}", |
|
f"--instance_data_dir={instance_data_dir}", |
|
f"--output_dir={lora_trained_xl_folder}", |
|
"--mixed_precision=fp16", |
|
f"--instance_prompt={instance_prompt}", |
|
"--resolution=1024", |
|
"--train_batch_size=2", |
|
"--gradient_accumulation_steps=2", |
|
"--gradient_checkpointing", |
|
"--learning_rate=1e-4", |
|
"--lr_scheduler=constant", |
|
"--lr_warmup_steps=0", |
|
"--enable_xformers_memory_efficient_attention", |
|
"--mixed_precision=fp16", |
|
"--use_8bit_adam", |
|
f"--max_train_steps={max_train_steps}", |
|
f"--checkpointing_steps={checkpoint_steps}", |
|
"--seed=0", |
|
"--push_to_hub", |
|
f"--hub_token={hf_token}" |
|
] |
|
|
|
try: |
|
subprocess.run(command, check=True) |
|
print("Training is finished!") |
|
if remove_gpu: |
|
swap_hardware(hf_token, "cpu-basic") |
|
except subprocess.CalledProcessError as e: |
|
print(f"An error occurred: {e}") |
|
|
|
title="There was an error on during your training" |
|
description=f''' |
|
Unfortunately there was an error during training your {lora_trained_xl_folder} model. |
|
Please check it out below. Feel free to report this issue to [SD-XL Dreambooth LoRa Training](https://huggingface.co/spaces/fffiloni/train-dreambooth-lora-sdxl): |
|
``` |
|
{str(e)} |
|
``` |
|
''' |
|
|
|
|
|
|
|
def main(dataset_id, |
|
lora_trained_xl_folder, |
|
instance_prompt, |
|
max_train_steps, |
|
checkpoint_steps, |
|
remove_gpu): |
|
|
|
|
|
if is_shared_ui: |
|
raise gr.Error("This Space only works in duplicated instances") |
|
|
|
if not is_gpu_associated: |
|
raise gr.Error("Please associate a T4 or A10G GPU for this Space") |
|
|
|
if dataset_id == "": |
|
raise gr.Error("You forgot to specify an image dataset") |
|
|
|
if instance_prompt == "": |
|
raise gr.Error("You forgot to specify a concept prompt") |
|
|
|
if lora_trained_xl_folder == "": |
|
raise gr.Error("You forgot to name the output folder for your model") |
|
|
|
sleep_time = get_sleep_time(hf_token) |
|
if sleep_time: |
|
swap_sleep_time(hf_token, -1) |
|
|
|
gr.Warning("If you did not check the `Remove GPU After training`, don't forget to remove the GPU attribution after you are done. ") |
|
|
|
dataset_repo = dataset_id |
|
|
|
|
|
repo_parts = dataset_repo.split("/") |
|
local_dir = f"./{repo_parts[-1]}" |
|
|
|
|
|
if not os.path.exists(local_dir): |
|
os.makedirs(local_dir) |
|
|
|
gr.Info("Downloading dataset ...") |
|
|
|
snapshot_download( |
|
dataset_repo, |
|
local_dir=local_dir, |
|
repo_type="dataset", |
|
ignore_patterns=".gitattributes", |
|
token=hf_token |
|
) |
|
|
|
set_accelerate_default_config() |
|
|
|
gr.Info("Training begins ...") |
|
|
|
instance_data_dir = repo_parts[-1] |
|
train_dreambooth_lora_sdxl(dataset_id, instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu) |
|
|
|
your_username = api.whoami(token=hf_token)["name"] |
|
return f"Done, your trained model has been stored in your models library: {your_username}/{lora_trained_xl_folder}" |
|
|
|
css=""" |
|
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
if is_shared_ui: |
|
top_description = gr.HTML(f''' |
|
<div class="gr-prose"> |
|
<h2>Attention - This Space doesn't work in this shared UI</h2> |
|
<p>For it to work, you can duplicate the Space and run it on your own profile using a (paid) private T4-small or A10G-small GPU for training. A T4 costs US$0.60/h, so it should cost < US$1 to train most models using default settings with it! <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p> |
|
</div> |
|
''') |
|
else: |
|
if(is_gpu_associated): |
|
top_description = gr.HTML(f''' |
|
<div class="gr-prose"> |
|
<h2>You have successfully associated a {which_gpu} GPU to the SD-XL Dreambooth LoRa Training Space ๐</h2> |
|
<p>You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned it off.</p> |
|
</div> |
|
''') |
|
else: |
|
top_description = gr.HTML(f''' |
|
<div class="gr-prose"> |
|
<h2>You have successfully duplicated the SD-XL Dreambooth LoRa Training Space ๐</h2> |
|
<p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p> |
|
</div> |
|
''') |
|
gr.Markdown("# SD-XL Dreambooth LoRa Training UI ๐ญ") |
|
gr.Markdown("## Drop your training images (optional)") |
|
gr.Markdown("Use this step to upload your training images. If you already have a dataset stored on your HF profile, you can skip this step, and provide your dataset ID in the training `Datased ID` input below.") |
|
images = gr.File(file_types=["image"], label="Upload your images", file_count="multiple", interactive=True, visible=True) |
|
with gr.Row(): |
|
new_dataset_name = gr.Textbox(label="Set new dataset name", placeholder="e.g.: my_awesome_dataset") |
|
load_btn = gr.Button("Load images to new dataset") |
|
dataset_status = gr.Textbox(label="dataset status") |
|
gr.Markdown("## Training ") |
|
gr.Markdown("You can use an existing image dataset, find a dataset example here: [https://huggingface.co/datasets/diffusers/dog-example](https://huggingface.co/datasets/diffusers/dog-example) ;)") |
|
with gr.Row(): |
|
dataset_id = gr.Textbox(label="Dataset ID", info="use one of your previously uploaded image datasets on your HF profile", placeholder="diffusers/dog-example") |
|
instance_prompt = gr.Textbox(label="Concept prompt", info="concept prompt - use a unique, made up word to avoid collisions") |
|
|
|
with gr.Row(): |
|
model_output_folder = gr.Textbox(label="Output model folder name", placeholder="lora-trained-xl-folder") |
|
max_train_steps = gr.Number(label="Max Training Steps", value=500, precision=0, step=10) |
|
checkpoint_steps = gr.Number(label="Checkpoints Steps", value=100, precision=0, step=10) |
|
remove_gpu = gr.Checkbox(label="Remove GPU After Training", value=True) |
|
train_button = gr.Button("Train !") |
|
|
|
|
|
train_status = gr.Textbox(label="Training status") |
|
|
|
load_btn.click( |
|
fn = load_images_to_dataset, |
|
inputs = [images, new_dataset_name], |
|
outputs = [dataset_status, dataset_id] |
|
) |
|
|
|
train_button.click( |
|
fn = main, |
|
inputs = [ |
|
dataset_id, |
|
model_output_folder, |
|
instance_prompt, |
|
max_train_steps, |
|
checkpoint_steps, |
|
remove_gpu |
|
], |
|
outputs = [train_status] |
|
) |
|
|
|
demo.queue(default_enabled=False).launch(debug=True) |