File size: 12,372 Bytes
05fd390 5a2793f 4efa9a6 e384b8f a267f7a 05fd390 9db9711 e384b8f db2a4a7 05fd390 3775564 463536c 9db9711 e384b8f 9db9711 4efa9a6 e384b8f 4c31f1c db2a4a7 4c31f1c 05fd390 ff441d1 05fd390 ff441d1 05fd390 118c8fd 05fd390 463536c 05fd390 463536c 05fd390 62b04c4 05fd390 9db9711 05fd390 9db9711 4a7dc08 9db9711 d666556 05fd390 463536c 383a495 463536c 9db9711 4c31f1c 881e5a4 9db9711 881e5a4 05fd390 4c31f1c dc3182d 9db9711 4a7dc08 9db9711 463536c 05fd390 8f30316 05fd390 4efa9a6 05fd390 f559d19 ff441d1 db2a4a7 05fd390 3775564 9db9711 33cad16 9db9711 33cad16 9db9711 33cad16 9db9711 6a9e512 e384b8f fdd5644 e384b8f 463536c 6a9e512 fc27a96 d666556 33cad16 05fd390 9db9711 e384b8f 86cbf7f 463536c 118c8fd 463536c 9db9711 463536c e384b8f 86cbf7f 05fd390 db2a4a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import gradio as gr
import torch
import os
import shutil
import requests
import subprocess
from subprocess import getoutput
from huggingface_hub import snapshot_download, HfApi, create_repo
api = HfApi()
hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION")
is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False
is_gpu_associated = torch.cuda.is_available()
if is_gpu_associated:
gpu_info = getoutput('nvidia-smi')
if("A10G" in gpu_info):
which_gpu = "A10G"
elif("T4" in gpu_info):
which_gpu = "T4"
else:
which_gpu = "CPU"
def load_images_to_dataset(images, dataset_name):
if dataset_name == "":
raise gr.Error("You forgot to name your new dataset. ")
# Create the directory if it doesn't exist
my_working_directory = f"my_working_directory_for_{dataset_name}"
if not os.path.exists(my_working_directory):
os.makedirs(my_working_directory)
# Assuming 'images' is a list of image file paths
for idx, image in enumerate(images):
# Get the base file name (without path) from the original location
image_name = os.path.basename(image.name)
# Construct the destination path in the working directory
destination_path = os.path.join(my_working_directory, image_name)
# Copy the image from the original location to the working directory
shutil.copy(image.name, destination_path)
# Print the image name and its corresponding save path
print(f"Image {idx + 1}: {image_name} copied to {destination_path}")
path_to_folder = my_working_directory
your_username = api.whoami(token=hf_token)["name"]
repo_id = f"{your_username}/{dataset_name}"
create_repo(repo_id=repo_id, repo_type="dataset", private=True, token=hf_token)
api.upload_folder(
folder_path=path_to_folder,
repo_id=repo_id,
repo_type="dataset",
token=hf_token
)
return "Done, your dataset is ready and loaded for the training step!", repo_id
def swap_hardware(hf_token, hardware="cpu-basic"):
hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware"
headers = { "authorization" : f"Bearer {hf_token}"}
body = {'flavor': hardware}
requests.post(hardware_url, json = body, headers=headers)
def swap_sleep_time(hf_token,sleep_time):
sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}/sleeptime"
headers = { "authorization" : f"Bearer {hf_token}"}
body = {'seconds':sleep_time}
requests.post(sleep_time_url,json=body,headers=headers)
def get_sleep_time(hf_token):
sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}"
headers = { "authorization" : f"Bearer {hf_token}"}
response = requests.get(sleep_time_url,headers=headers)
try:
gcTimeout = response.json()['runtime']['gcTimeout']
except:
gcTimeout = None
return gcTimeout
def write_to_community(title, description,hf_token):
api.create_discussion(repo_id=os.environ['SPACE_ID'], title=title, description=description,repo_type="space", token=hf_token)
def set_accelerate_default_config():
try:
subprocess.run(["accelerate", "config", "default"], check=True)
print("Accelerate default config set successfully!")
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
def train_dreambooth_lora_sdxl(dataset_id, instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu):
script_filename = "train_dreambooth_lora_sdxl.py" # Assuming it's in the same folder
command = [
"accelerate",
"launch",
script_filename, # Use the local script
"--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
f"--dataset_id={dataset_id}",
f"--instance_data_dir={instance_data_dir}",
f"--output_dir={lora_trained_xl_folder}",
"--mixed_precision=fp16",
f"--instance_prompt={instance_prompt}",
"--resolution=1024",
"--train_batch_size=2",
"--gradient_accumulation_steps=2",
"--gradient_checkpointing",
"--learning_rate=1e-4",
"--lr_scheduler=constant",
"--lr_warmup_steps=0",
"--enable_xformers_memory_efficient_attention",
"--mixed_precision=fp16",
"--use_8bit_adam",
f"--max_train_steps={max_train_steps}",
f"--checkpointing_steps={checkpoint_steps}",
"--seed=0",
"--push_to_hub",
f"--hub_token={hf_token}"
]
try:
subprocess.run(command, check=True)
print("Training is finished!")
if remove_gpu:
swap_hardware(hf_token, "cpu-basic")
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
title="There was an error on during your training"
description=f'''
Unfortunately there was an error during training your {lora_trained_xl_folder} model.
Please check it out below. Feel free to report this issue to [SD-XL Dreambooth LoRa Training](https://huggingface.co/spaces/fffiloni/train-dreambooth-lora-sdxl):
```
{str(e)}
```
'''
#swap_hardware(hf_token, "cpu-basic")
#write_to_community(title,description,hf_token)
def main(dataset_id,
lora_trained_xl_folder,
instance_prompt,
max_train_steps,
checkpoint_steps,
remove_gpu):
if is_shared_ui:
raise gr.Error("This Space only works in duplicated instances")
if not is_gpu_associated:
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
if dataset_id == "":
raise gr.Error("You forgot to specify an image dataset")
if instance_prompt == "":
raise gr.Error("You forgot to specify a concept prompt")
if lora_trained_xl_folder == "":
raise gr.Error("You forgot to name the output folder for your model")
sleep_time = get_sleep_time(hf_token)
if sleep_time:
swap_sleep_time(hf_token, -1)
gr.Warning("If you did not check the `Remove GPU After training`, don't forget to remove the GPU attribution after you are done. ")
dataset_repo = dataset_id
# Automatically set local_dir based on the last part of dataset_repo
repo_parts = dataset_repo.split("/")
local_dir = f"./{repo_parts[-1]}" # Use the last part of the split
# Check if the directory exists and create it if necessary
if not os.path.exists(local_dir):
os.makedirs(local_dir)
gr.Info("Downloading dataset ...")
snapshot_download(
dataset_repo,
local_dir=local_dir,
repo_type="dataset",
ignore_patterns=".gitattributes",
token=hf_token
)
set_accelerate_default_config()
gr.Info("Training begins ...")
instance_data_dir = repo_parts[-1]
train_dreambooth_lora_sdxl(dataset_id, instance_data_dir, lora_trained_xl_folder, instance_prompt, max_train_steps, checkpoint_steps, remove_gpu)
your_username = api.whoami(token=hf_token)["name"]
return f"Done, your trained model has been stored in your models library: {your_username}/{lora_trained_xl_folder}"
css="""
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2>Attention - This Space doesn't work in this shared UI</h2>
<p>For it to work, you can duplicate the Space and run it on your own profile using a (paid) private T4-small or A10G-small GPU for training. A T4 costs US$0.60/h, so it should cost < US$1 to train most models using default settings with it! <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
</div>
''')
else:
if(is_gpu_associated):
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2>You have successfully associated a {which_gpu} GPU to the SD-XL Dreambooth LoRa Training Space ๐</h2>
<p>You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned it off.</p>
</div>
''')
else:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2>You have successfully duplicated the SD-XL Dreambooth LoRa Training Space ๐</h2>
<p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
</div>
''')
gr.Markdown("# SD-XL Dreambooth LoRa Training UI ๐ญ")
gr.Markdown("## Drop your training images (optional)")
gr.Markdown("Use this step to upload your training images. If you already have a dataset stored on your HF profile, you can skip this step, and provide your dataset ID in the training `Datased ID` input below.")
images = gr.File(file_types=["image"], label="Upload your images", file_count="multiple", interactive=True, visible=True)
with gr.Row():
new_dataset_name = gr.Textbox(label="Set new dataset name", placeholder="e.g.: my_awesome_dataset")
load_btn = gr.Button("Load images to new dataset")
dataset_status = gr.Textbox(label="dataset status")
gr.Markdown("## Training ")
gr.Markdown("You can use an existing image dataset, find a dataset example here: [https://huggingface.co/datasets/diffusers/dog-example](https://huggingface.co/datasets/diffusers/dog-example) ;)")
with gr.Row():
dataset_id = gr.Textbox(label="Dataset ID", info="use one of your previously uploaded image datasets on your HF profile", placeholder="diffusers/dog-example")
instance_prompt = gr.Textbox(label="Concept prompt", info="concept prompt - use a unique, made up word to avoid collisions")
with gr.Row():
model_output_folder = gr.Textbox(label="Output model folder name", placeholder="lora-trained-xl-folder")
max_train_steps = gr.Number(label="Max Training Steps", value=500, precision=0, step=10)
checkpoint_steps = gr.Number(label="Checkpoints Steps", value=100, precision=0, step=10)
remove_gpu = gr.Checkbox(label="Remove GPU After Training", value=True)
train_button = gr.Button("Train !")
train_status = gr.Textbox(label="Training status")
load_btn.click(
fn = load_images_to_dataset,
inputs = [images, new_dataset_name],
outputs = [dataset_status, dataset_id]
)
train_button.click(
fn = main,
inputs = [
dataset_id,
model_output_folder,
instance_prompt,
max_train_steps,
checkpoint_steps,
remove_gpu
],
outputs = [train_status]
)
demo.queue(default_enabled=False).launch(debug=True) |