Nymbo's picture
Update app.py
e13eb1b verified
raw
history blame
8.29 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
selected_model,
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- selected_model: the model to use for generating the response
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model: {selected_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=selected_model, # Use the selected model
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty, # <-- NEW
seed=seed, # <-- NEW
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Define the list of featured models
featured_models = [
"meta-llama/Llama-3.3-70B-Instruct",
"google/flan-t5-xl",
"facebook/bart-large-cnn",
"EleutherAI/gpt-neo-2.7B",
# Add more featured models here
]
# Create the Gradio Blocks interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# Tab for model selection
with gr.Tab("Models"):
with gr.Row():
with gr.Column():
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
model = gr.Dropdown(label="Select a model below", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True)
def filter_models(search_term):
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
model_search.change(filter_models, inputs=model_search, outputs=model)
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model ID here", interactive=True)
# Tab for chat interface
with gr.Tab("Chat"):
with gr.Row():
with gr.Column():
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
# Additional parameters
with gr.Row():
with gr.Column():
system_message = gr.Textbox(label="System Message", value="", lines=3)
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max New Tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
# Chatbot display
chatbot = gr.Chatbot(height=600)
# Submit button
submit_btn = gr.Button("Submit")
# Tab for information
with gr.Tab("Information"):
with gr.Row():
gr.Markdown(
"""
# Featured Models
- **meta-llama/Llama-3.3-70B-Instruct**: A large language model from Meta.
- **google/flan-t5-xl**: A pretrained encoder-decoder model from Google.
- **facebook/bart-large-cnn**: A pretrained sequence-to-sequence model from Facebook.
- **EleutherAI/gpt-neo-2.7B**: A large autoregressive language model from EleutherAI.
# Parameters Overview
- **System Message**: Sets the behavior and context for the assistant.
- **Max New Tokens**: Limits the length of the generated response.
- **Temperature**: Controls the randomness of the output. Higher values make output more random.
- **Top-P**: Controls the diversity of text by selecting tokens that account for top-p probability mass.
- **Frequency Penalty**: Decreases the model's likelihood to repeat the same lines.
- **Seed**: Ensures reproducibility of results; set to -1 for random seed.
"""
)
# Function to handle chat submission
def user(user_message, history):
return "", history + [[user_message, None]]
# Function to process the chat
def bot(history, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, selected_model):
# Get the last user message
user_message = history[-1][0]
# Generate response
response_iter = respond(
user_message,
history[:-1], # Exclude the last user message which doesn't have a response yet
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
selected_model,
)
# Collect the entire response
full_response = ""
for resp in response_iter:
full_response = resp
# Update history with the bot's response
history[-1][1] = full_response
return history
# Set up the chat flow
txt.submit(user, [txt, chatbot], [txt, chatbot], queue=False).then(
bot, [chatbot, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model], chatbot
)
submit_btn.click(user, [txt, chatbot], [txt, chatbot], queue=False).then(
bot, [chatbot, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model], chatbot
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()