File size: 8,292 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
e13eb1b
038f313
e13eb1b
038f313
 
 
 
e13eb1b
038f313
 
 
e13eb1b
69b4a5f
038f313
 
 
3a64d68
e13eb1b
 
038f313
e13eb1b
 
 
 
 
 
 
 
 
 
 
 
 
f7c4208
 
e13eb1b
 
f7c4208
e13eb1b
f7c4208
e13eb1b
5b1509d
 
038f313
e13eb1b
880ced6
f7c4208
 
e13eb1b
 
 
 
 
 
 
 
 
 
 
038f313
 
e13eb1b
038f313
e13eb1b
f7c4208
e13eb1b
 
 
038f313
e13eb1b
038f313
 
e13eb1b
 
 
038f313
f7c4208
e13eb1b
 
 
cf508a7
542c2ac
e13eb1b
f7c4208
e13eb1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf508a7
e13eb1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    selected_model,
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    - selected_model: the model to use for generating the response
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model: {selected_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model=selected_model,  # Use the selected model
        max_tokens=max_tokens,
        stream=True,  # Stream the response
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,  # <-- NEW
        seed=seed,  # <-- NEW
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

# Define the list of featured models
featured_models = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "google/flan-t5-xl",
    "facebook/bart-large-cnn",
    "EleutherAI/gpt-neo-2.7B",
    # Add more featured models here
]

# Create the Gradio Blocks interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    # Tab for model selection
    with gr.Tab("Models"):
        with gr.Row():
            with gr.Column():
                with gr.Accordion("Featured Models", open=True):
                    model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
                    model = gr.Dropdown(label="Select a model below", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True)

                    def filter_models(search_term):
                        filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
                        return gr.update(choices=filtered_models)

                    model_search.change(filter_models, inputs=model_search, outputs=model)

                custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model ID here", interactive=True)

    # Tab for chat interface
    with gr.Tab("Chat"):
        with gr.Row():
            with gr.Column():
                txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
        
        # Additional parameters
        with gr.Row():
            with gr.Column():
                system_message = gr.Textbox(label="System Message", value="", lines=3)
                max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max New Tokens")
                temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
                top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
                frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
                seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")

        # Chatbot display
        chatbot = gr.Chatbot(height=600)

        # Submit button
        submit_btn = gr.Button("Submit")

    # Tab for information
    with gr.Tab("Information"):
        with gr.Row():
            gr.Markdown(
                """
                # Featured Models
                
                - **meta-llama/Llama-3.3-70B-Instruct**: A large language model from Meta.
                - **google/flan-t5-xl**: A pretrained encoder-decoder model from Google.
                - **facebook/bart-large-cnn**: A pretrained sequence-to-sequence model from Facebook.
                - **EleutherAI/gpt-neo-2.7B**: A large autoregressive language model from EleutherAI.
                
                # Parameters Overview
                
                - **System Message**: Sets the behavior and context for the assistant.
                - **Max New Tokens**: Limits the length of the generated response.
                - **Temperature**: Controls the randomness of the output. Higher values make output more random.
                - **Top-P**: Controls the diversity of text by selecting tokens that account for top-p probability mass.
                - **Frequency Penalty**: Decreases the model's likelihood to repeat the same lines.
                - **Seed**: Ensures reproducibility of results; set to -1 for random seed.
                """
            )

    # Function to handle chat submission
    def user(user_message, history):
        return "", history + [[user_message, None]]

    # Function to process the chat
    def bot(history, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, selected_model):
        # Get the last user message
        user_message = history[-1][0]
        # Generate response
        response_iter = respond(
            user_message,
            history[:-1],  # Exclude the last user message which doesn't have a response yet
            system_message,
            max_tokens,
            temperature,
            top_p,
            frequency_penalty,
            seed,
            selected_model,
        )
        # Collect the entire response
        full_response = ""
        for resp in response_iter:
            full_response = resp
        # Update history with the bot's response
        history[-1][1] = full_response
        return history

    # Set up the chat flow
    txt.submit(user, [txt, chatbot], [txt, chatbot], queue=False).then(
        bot, [chatbot, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model], chatbot
    )
    submit_btn.click(user, [txt, chatbot], [txt, chatbot], queue=False).then(
        bot, [chatbot, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model], chatbot
    )

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()