Spaces:
Running
Running
File size: 8,292 Bytes
038f313 4c18bfc 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 69b4a5f 038f313 3a64d68 e13eb1b 038f313 e13eb1b f7c4208 e13eb1b f7c4208 e13eb1b f7c4208 e13eb1b 5b1509d 038f313 e13eb1b 880ced6 f7c4208 e13eb1b 038f313 e13eb1b 038f313 e13eb1b f7c4208 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 f7c4208 e13eb1b cf508a7 542c2ac e13eb1b f7c4208 e13eb1b cf508a7 e13eb1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
selected_model,
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- selected_model: the model to use for generating the response
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model: {selected_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=selected_model, # Use the selected model
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty, # <-- NEW
seed=seed, # <-- NEW
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Define the list of featured models
featured_models = [
"meta-llama/Llama-3.3-70B-Instruct",
"google/flan-t5-xl",
"facebook/bart-large-cnn",
"EleutherAI/gpt-neo-2.7B",
# Add more featured models here
]
# Create the Gradio Blocks interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# Tab for model selection
with gr.Tab("Models"):
with gr.Row():
with gr.Column():
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
model = gr.Dropdown(label="Select a model below", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True)
def filter_models(search_term):
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
model_search.change(filter_models, inputs=model_search, outputs=model)
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model ID here", interactive=True)
# Tab for chat interface
with gr.Tab("Chat"):
with gr.Row():
with gr.Column():
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
# Additional parameters
with gr.Row():
with gr.Column():
system_message = gr.Textbox(label="System Message", value="", lines=3)
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max New Tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
# Chatbot display
chatbot = gr.Chatbot(height=600)
# Submit button
submit_btn = gr.Button("Submit")
# Tab for information
with gr.Tab("Information"):
with gr.Row():
gr.Markdown(
"""
# Featured Models
- **meta-llama/Llama-3.3-70B-Instruct**: A large language model from Meta.
- **google/flan-t5-xl**: A pretrained encoder-decoder model from Google.
- **facebook/bart-large-cnn**: A pretrained sequence-to-sequence model from Facebook.
- **EleutherAI/gpt-neo-2.7B**: A large autoregressive language model from EleutherAI.
# Parameters Overview
- **System Message**: Sets the behavior and context for the assistant.
- **Max New Tokens**: Limits the length of the generated response.
- **Temperature**: Controls the randomness of the output. Higher values make output more random.
- **Top-P**: Controls the diversity of text by selecting tokens that account for top-p probability mass.
- **Frequency Penalty**: Decreases the model's likelihood to repeat the same lines.
- **Seed**: Ensures reproducibility of results; set to -1 for random seed.
"""
)
# Function to handle chat submission
def user(user_message, history):
return "", history + [[user_message, None]]
# Function to process the chat
def bot(history, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, selected_model):
# Get the last user message
user_message = history[-1][0]
# Generate response
response_iter = respond(
user_message,
history[:-1], # Exclude the last user message which doesn't have a response yet
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
selected_model,
)
# Collect the entire response
full_response = ""
for resp in response_iter:
full_response = resp
# Update history with the bot's response
history[-1][1] = full_response
return history
# Set up the chat flow
txt.submit(user, [txt, chatbot], [txt, chatbot], queue=False).then(
bot, [chatbot, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model], chatbot
)
submit_btn.click(user, [txt, chatbot], [txt, chatbot], queue=False).then(
bot, [chatbot, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model], chatbot
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |