Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
featured_model | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the output | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
- custom_model: the user-provided custom model name (if any) | |
- featured_model: the model selected from the "Featured Models" radio | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Custom model: {custom_model}") | |
print(f"Featured model: {featured_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Determine which model to use | |
# If custom_model is provided, that overrides everything. | |
# Otherwise, use the selected featured_model. | |
# If featured_model is empty, fall back on the default. | |
if custom_model.strip() != "": | |
model_to_use = custom_model.strip() | |
else: | |
model_to_use = featured_model.strip() if featured_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" | |
print(f"Model selected for inference: {model_to_use}") | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Make the streaming request to the HF Inference API via openai-like client | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
yield response | |
print("Completed response generation.") | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
#################################### | |
# GRADIO UI SETUP # | |
#################################### | |
# 1) We'll create a set of placeholder featured models. | |
all_featured_models = [ | |
"meta-llama/Llama-2-7B-Chat-hf", | |
"meta-llama/Llama-2-13B-Chat-hf", | |
"bigscience/bloom", | |
"google/flan-t5-xxl", | |
"meta-llama/Llama-3.3-70B-Instruct" | |
] | |
def filter_featured_models(search_term): | |
""" | |
Helper function to filter featured models by search text. | |
""" | |
filtered = [m for m in all_featured_models if search_term.lower() in m.lower()] | |
# We'll return an update with the filtered list | |
return gr.update(choices=filtered) | |
# 2) Create the ChatInterface with additional inputs | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.Markdown("# Serverless Text Generation Hub") | |
# We'll organize content in tabs similar to the ImgGen-Hub | |
with gr.Tab("Chat"): | |
gr.Markdown("## Chat Interface") | |
chat_interface = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider( | |
minimum=1, | |
maximum=4096, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P" | |
), | |
gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty" | |
), | |
gr.Slider( | |
minimum=-1, | |
maximum=65535, | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)" | |
), | |
gr.Textbox( | |
value="", | |
label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. This overrides the featured model if not empty." | |
), | |
], | |
fill_height=True, | |
chatbot=chatbot | |
) | |
# We'll add a new accordion for "Featured Models" within the Chat tab | |
with gr.Accordion("Featured Models", open=True): | |
gr.Markdown("Pick one of the placeholder featured models below, or search for more.") | |
featured_model_search = gr.Textbox( | |
label="Filter Models", | |
placeholder="Type to filter featured models..." | |
) | |
featured_model_radio = gr.Radio( | |
label="Select a featured model", | |
choices=all_featured_models, | |
value="meta-llama/Llama-3.3-70B-Instruct" | |
) | |
# Connect the search box to the filter function | |
featured_model_search.change( | |
filter_featured_models, | |
inputs=featured_model_search, | |
outputs=featured_model_radio | |
) | |
# We must connect the featured_model_radio to the chat interface | |
# We'll pass it as the last argument in the respond function. | |
chat_interface.add_variable(featured_model_radio, "featured_model") | |
# 3) Create the "Information" tab, containing: | |
# - A "Featured Models" accordion with a table | |
# - A "Parameters Overview" accordion with markdown | |
with gr.Tab("Information"): | |
gr.Markdown("## Additional Information and Help") | |
with gr.Accordion("Featured Models (Table)", open=False): | |
gr.Markdown(""" | |
Here is a table of some placeholder featured models: | |
<table style="width:100%; text-align:center; margin:auto;"> | |
<tr> | |
<th>Model</th> | |
<th>Description</th> | |
</tr> | |
<tr> | |
<td>meta-llama/Llama-2-7B-Chat-hf</td> | |
<td>A 7B parameter Llama 2 Chat model</td> | |
</tr> | |
<tr> | |
<td>meta-llama/Llama-2-13B-Chat-hf</td> | |
<td>A 13B parameter Llama 2 Chat model</td> | |
</tr> | |
<tr> | |
<td>bigscience/bloom</td> | |
<td>Large-scale multilingual model</td> | |
</tr> | |
<tr> | |
<td>google/flan-t5-xxl</td> | |
<td>A large instruction-tuned T5 model</td> | |
</tr> | |
<tr> | |
<td>meta-llama/Llama-3.3-70B-Instruct</td> | |
<td>70B parameter Llama 3.3 instruct model</td> | |
</tr> | |
</table> | |
""") | |
with gr.Accordion("Parameters Overview", open=False): | |
gr.Markdown(""" | |
**Here’s a quick breakdown of the main parameters you’ll find in this interface:** | |
- **Max New Tokens**: This controls the maximum number of tokens (words or subwords) in the generated response. | |
- **Temperature**: Adjusts how 'creative' or random the model's output is. A low temperature keeps it more predictable; a high temperature makes it more varied or 'wacky.' | |
- **Top-P**: Also known as nucleus sampling. Controls how the model decides which words to include. Lower means more conservative, higher means more open. | |
- **Frequency Penalty**: A value to penalize repeated words or phrases. Higher penalty means the model will avoid repeating itself. | |
- **Seed**: Fix a random seed for reproducibility. If set to -1, a random seed is used each time. | |
- **Custom Model**: Provide the full Hugging Face model path (like `bigscience/bloom`) if you'd like to override the default or the featured model you selected above. | |
### Usage Tips | |
1. If you’d like to use one of the featured models, simply select it from the list in the **Featured Models** accordion. | |
2. If you’d like to override the featured models, type your own custom path in **Custom Model**. | |
3. Adjust your parameters (temperature, top-p, etc.) if you want different styles of results. | |
4. You can provide a **System message** to guide the overall behavior or 'role' of the AI. For example, you can say "You are a helpful coding assistant" or something else to set the context. | |
Feel free to play around with these settings, and if you have any questions, check out the Hugging Face docs or ask in the community spaces! | |
""") | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |