File size: 10,816 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
e13eb1b
038f313
e13eb1b
038f313
 
 
 
e13eb1b
038f313
 
 
e13eb1b
69b4a5f
038f313
 
 
3a64d68
98674ca
ce12e24
 
038f313
e13eb1b
52ad57a
 
 
 
 
 
 
 
 
98674ca
ce12e24
e13eb1b
52ad57a
f7c4208
 
86297f5
52ad57a
 
98674ca
ce12e24
f7c4208
52ad57a
 
 
038f313
e13eb1b
880ced6
f7c4208
 
e13eb1b
 
 
 
 
 
86297f5
e13eb1b
 
 
 
038f313
 
ce12e24
 
 
 
 
 
 
 
 
98674ca
 
e13eb1b
038f313
b56d11c
f7c4208
52ad57a
e13eb1b
ce12e24
038f313
ce12e24
038f313
 
98674ca
 
86297f5
038f313
f7c4208
86297f5
b56d11c
 
 
542c2ac
e13eb1b
f7c4208
52ad57a
e13eb1b
 
 
ce12e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ad57a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model,
    featured_model
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    - custom_model: the user-provided custom model name (if any)
    - featured_model: the model selected from the "Featured Models" radio
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Custom model: {custom_model}")
    print(f"Featured model: {featured_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Determine which model to use
    # If custom_model is provided, that overrides everything.
    # Otherwise, use the selected featured_model.
    # If featured_model is empty, fall back on the default.
    if custom_model.strip() != "":
        model_to_use = custom_model.strip()
    else:
        model_to_use = featured_model.strip() if featured_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"

    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model=model_to_use,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

####################################
#           GRADIO UI SETUP        #
####################################

# 1) We'll create a set of placeholder featured models.
all_featured_models = [
    "meta-llama/Llama-2-7B-Chat-hf",
    "meta-llama/Llama-2-13B-Chat-hf",
    "bigscience/bloom",
    "google/flan-t5-xxl",
    "meta-llama/Llama-3.3-70B-Instruct"
]

def filter_featured_models(search_term):
    """
    Helper function to filter featured models by search text.
    """
    filtered = [m for m in all_featured_models if search_term.lower() in m.lower()]
    # We'll return an update with the filtered list
    return gr.update(choices=filtered)

# 2) Create the ChatInterface with additional inputs
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    gr.Markdown("# Serverless Text Generation Hub")

    # We'll organize content in tabs similar to the ImgGen-Hub
    with gr.Tab("Chat"):
        gr.Markdown("## Chat Interface")
        chat_interface = gr.ChatInterface(
            fn=respond,
            additional_inputs=[
                gr.Textbox(value="", label="System message"),
                gr.Slider(
                    minimum=1,
                    maximum=4096,
                    value=512,
                    step=1,
                    label="Max new tokens"
                ),
                gr.Slider(
                    minimum=0.1,
                    maximum=4.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                ),
                gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-P"
                ),
                gr.Slider(
                    minimum=-2.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Frequency Penalty"
                ),
                gr.Slider(
                    minimum=-1,
                    maximum=65535,
                    value=-1,
                    step=1,
                    label="Seed (-1 for random)"
                ),
                gr.Textbox(
                    value="",
                    label="Custom Model",
                    info="(Optional) Provide a custom Hugging Face model path. This overrides the featured model if not empty."
                ),
            ],
            fill_height=True,
            chatbot=chatbot
        )

        # We'll add a new accordion for "Featured Models" within the Chat tab
        with gr.Accordion("Featured Models", open=True):
            gr.Markdown("Pick one of the placeholder featured models below, or search for more.")
            featured_model_search = gr.Textbox(
                label="Filter Models",
                placeholder="Type to filter featured models..."
            )
            featured_model_radio = gr.Radio(
                label="Select a featured model",
                choices=all_featured_models,
                value="meta-llama/Llama-3.3-70B-Instruct"
            )
            # Connect the search box to the filter function
            featured_model_search.change(
                filter_featured_models,
                inputs=featured_model_search,
                outputs=featured_model_radio
            )

            # We must connect the featured_model_radio to the chat interface
            # We'll pass it as the last argument in the respond function.
            chat_interface.add_variable(featured_model_radio, "featured_model")

    # 3) Create the "Information" tab, containing:
    #    - A "Featured Models" accordion with a table
    #    - A "Parameters Overview" accordion with markdown
    with gr.Tab("Information"):
        gr.Markdown("## Additional Information and Help")
        with gr.Accordion("Featured Models (Table)", open=False):
            gr.Markdown("""
            Here is a table of some placeholder featured models:
            <table style="width:100%; text-align:center; margin:auto;">
                <tr>
                    <th>Model</th>
                    <th>Description</th>
                </tr>
                <tr>
                    <td>meta-llama/Llama-2-7B-Chat-hf</td>
                    <td>A 7B parameter Llama 2 Chat model</td>
                </tr>
                <tr>
                    <td>meta-llama/Llama-2-13B-Chat-hf</td>
                    <td>A 13B parameter Llama 2 Chat model</td>
                </tr>
                <tr>
                    <td>bigscience/bloom</td>
                    <td>Large-scale multilingual model</td>
                </tr>
                <tr>
                    <td>google/flan-t5-xxl</td>
                    <td>A large instruction-tuned T5 model</td>
                </tr>
                <tr>
                    <td>meta-llama/Llama-3.3-70B-Instruct</td>
                    <td>70B parameter Llama 3.3 instruct model</td>
                </tr>
            </table>
            """)

        with gr.Accordion("Parameters Overview", open=False):
            gr.Markdown("""
            **Here’s a quick breakdown of the main parameters you’ll find in this interface:**

            - **Max New Tokens**: This controls the maximum number of tokens (words or subwords) in the generated response.  
            - **Temperature**: Adjusts how 'creative' or random the model's output is. A low temperature keeps it more predictable; a high temperature makes it more varied or 'wacky.'  
            - **Top-P**: Also known as nucleus sampling. Controls how the model decides which words to include. Lower means more conservative, higher means more open.  
            - **Frequency Penalty**: A value to penalize repeated words or phrases. Higher penalty means the model will avoid repeating itself.  
            - **Seed**: Fix a random seed for reproducibility. If set to -1, a random seed is used each time.  
            - **Custom Model**: Provide the full Hugging Face model path (like `bigscience/bloom`) if you'd like to override the default or the featured model you selected above.

            ### Usage Tips
            1. If you’d like to use one of the featured models, simply select it from the list in the **Featured Models** accordion.  
            2. If you’d like to override the featured models, type your own custom path in **Custom Model**.  
            3. Adjust your parameters (temperature, top-p, etc.) if you want different styles of results.  
            4. You can provide a **System message** to guide the overall behavior or 'role' of the AI. For example, you can say "You are a helpful coding assistant" or something else to set the context.

            Feel free to play around with these settings, and if you have any questions, check out the Hugging Face docs or ask in the community spaces!
            """)

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()