Spaces:
Running
Running
File size: 10,816 Bytes
038f313 4c18bfc 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 69b4a5f 038f313 3a64d68 98674ca ce12e24 038f313 e13eb1b 52ad57a 98674ca ce12e24 e13eb1b 52ad57a f7c4208 86297f5 52ad57a 98674ca ce12e24 f7c4208 52ad57a 038f313 e13eb1b 880ced6 f7c4208 e13eb1b 86297f5 e13eb1b 038f313 ce12e24 98674ca e13eb1b 038f313 b56d11c f7c4208 52ad57a e13eb1b ce12e24 038f313 ce12e24 038f313 98674ca 86297f5 038f313 f7c4208 86297f5 b56d11c 542c2ac e13eb1b f7c4208 52ad57a e13eb1b ce12e24 52ad57a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
featured_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: the user-provided custom model name (if any)
- featured_model: the model selected from the "Featured Models" radio
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Featured model: {featured_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Determine which model to use
# If custom_model is provided, that overrides everything.
# Otherwise, use the selected featured_model.
# If featured_model is empty, fall back on the default.
if custom_model.strip() != "":
model_to_use = custom_model.strip()
else:
model_to_use = featured_model.strip() if featured_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
####################################
# GRADIO UI SETUP #
####################################
# 1) We'll create a set of placeholder featured models.
all_featured_models = [
"meta-llama/Llama-2-7B-Chat-hf",
"meta-llama/Llama-2-13B-Chat-hf",
"bigscience/bloom",
"google/flan-t5-xxl",
"meta-llama/Llama-3.3-70B-Instruct"
]
def filter_featured_models(search_term):
"""
Helper function to filter featured models by search text.
"""
filtered = [m for m in all_featured_models if search_term.lower() in m.lower()]
# We'll return an update with the filtered list
return gr.update(choices=filtered)
# 2) Create the ChatInterface with additional inputs
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("# Serverless Text Generation Hub")
# We'll organize content in tabs similar to the ImgGen-Hub
with gr.Tab("Chat"):
gr.Markdown("## Chat Interface")
chat_interface = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
),
gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
),
gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
),
gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. This overrides the featured model if not empty."
),
],
fill_height=True,
chatbot=chatbot
)
# We'll add a new accordion for "Featured Models" within the Chat tab
with gr.Accordion("Featured Models", open=True):
gr.Markdown("Pick one of the placeholder featured models below, or search for more.")
featured_model_search = gr.Textbox(
label="Filter Models",
placeholder="Type to filter featured models..."
)
featured_model_radio = gr.Radio(
label="Select a featured model",
choices=all_featured_models,
value="meta-llama/Llama-3.3-70B-Instruct"
)
# Connect the search box to the filter function
featured_model_search.change(
filter_featured_models,
inputs=featured_model_search,
outputs=featured_model_radio
)
# We must connect the featured_model_radio to the chat interface
# We'll pass it as the last argument in the respond function.
chat_interface.add_variable(featured_model_radio, "featured_model")
# 3) Create the "Information" tab, containing:
# - A "Featured Models" accordion with a table
# - A "Parameters Overview" accordion with markdown
with gr.Tab("Information"):
gr.Markdown("## Additional Information and Help")
with gr.Accordion("Featured Models (Table)", open=False):
gr.Markdown("""
Here is a table of some placeholder featured models:
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model</th>
<th>Description</th>
</tr>
<tr>
<td>meta-llama/Llama-2-7B-Chat-hf</td>
<td>A 7B parameter Llama 2 Chat model</td>
</tr>
<tr>
<td>meta-llama/Llama-2-13B-Chat-hf</td>
<td>A 13B parameter Llama 2 Chat model</td>
</tr>
<tr>
<td>bigscience/bloom</td>
<td>Large-scale multilingual model</td>
</tr>
<tr>
<td>google/flan-t5-xxl</td>
<td>A large instruction-tuned T5 model</td>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>70B parameter Llama 3.3 instruct model</td>
</tr>
</table>
""")
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown("""
**Here’s a quick breakdown of the main parameters you’ll find in this interface:**
- **Max New Tokens**: This controls the maximum number of tokens (words or subwords) in the generated response.
- **Temperature**: Adjusts how 'creative' or random the model's output is. A low temperature keeps it more predictable; a high temperature makes it more varied or 'wacky.'
- **Top-P**: Also known as nucleus sampling. Controls how the model decides which words to include. Lower means more conservative, higher means more open.
- **Frequency Penalty**: A value to penalize repeated words or phrases. Higher penalty means the model will avoid repeating itself.
- **Seed**: Fix a random seed for reproducibility. If set to -1, a random seed is used each time.
- **Custom Model**: Provide the full Hugging Face model path (like `bigscience/bloom`) if you'd like to override the default or the featured model you selected above.
### Usage Tips
1. If you’d like to use one of the featured models, simply select it from the list in the **Featured Models** accordion.
2. If you’d like to override the featured models, type your own custom path in **Custom Model**.
3. Adjust your parameters (temperature, top-p, etc.) if you want different styles of results.
4. You can provide a **System message** to guide the overall behavior or 'role' of the AI. For example, you can say "You are a helpful coding assistant" or something else to set the context.
Feel free to play around with these settings, and if you have any questions, check out the Hugging Face docs or ask in the community spaces!
""")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |