Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
model, | |
custom_model | |
): | |
""" | |
Handles the chatbot response with given parameters. | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Model: {model}, Custom Model: {custom_model}") | |
# Use custom model if provided, else use selected model | |
selected_model = custom_model.strip() if custom_model.strip() else model | |
print(f"Selected model: {selected_model}") | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Make the streaming request to the HF Inference API via OpenAI-like client | |
for message_chunk in client.chat.completions.create( | |
model=selected_model, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed if seed != -1 else None, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
yield response | |
print("Completed response generation.") | |
# Create a Chatbot component | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# Define the featured models for the dropdown | |
models_list = [ | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"bigscience/bloom-176b", | |
"gpt-j-6b", | |
"opt-30b", | |
"flan-t5-xxl", | |
] | |
# Function to filter models based on user input | |
def filter_models(search_term): | |
return [m for m in models_list if search_term.lower() in m.lower()] | |
# Gradio interface | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
with gr.Row(): | |
chatbot = gr.Chatbot(height=600) | |
with gr.Tab("Chat Interface"): | |
with gr.Row(): | |
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...") | |
with gr.Row(): | |
system_message = gr.Textbox(value="", label="System Message") | |
with gr.Row(): | |
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max Tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
with gr.Row(): | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P") | |
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") | |
with gr.Row(): | |
model = gr.Dropdown(label="Select a Model", choices=models_list, value="meta-llama/Llama-3.3-70B-Instruct") | |
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter custom model path") | |
with gr.Row(): | |
run_button = gr.Button("Generate Response") | |
with gr.Tab("Information"): | |
with gr.Accordion("Featured Models", open=False): | |
gr.HTML( | |
""" | |
<table> | |
<tr><th>Model Name</th><th>Description</th></tr> | |
<tr><td>meta-llama/Llama-3.3-70B-Instruct</td><td>Instruction-tuned LLaMA model</td></tr> | |
<tr><td>bigscience/bloom-176b</td><td>Multilingual large language model</td></tr> | |
<tr><td>gpt-j-6b</td><td>Open-source GPT model</td></tr> | |
<tr><td>opt-30b</td><td>Meta's OPT model</td></tr> | |
<tr><td>flan-t5-xxl</td><td>Google's Flan-tuned T5 XXL</td></tr> | |
</table> | |
""" | |
) | |
with gr.Accordion("Parameters Overview", open=False): | |
gr.Markdown( | |
""" | |
### Parameters Overview | |
- **Max Tokens**: Maximum number of tokens in the response. | |
- **Temperature**: Controls the randomness of responses. Lower values make the output more deterministic. | |
- **Top-P**: Controls the diversity of responses by limiting the token selection to a probability mass. | |
- **Frequency Penalty**: Penalizes repeated tokens in the output. | |
- **Seed**: Fixes randomness for reproducibility. Use -1 for a random seed. | |
""" | |
) | |
run_button.click( | |
respond, | |
inputs=[ | |
user_input, | |
chatbot.state, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
model, | |
custom_model | |
], | |
outputs=chatbot | |
) | |
print("Launching the demo application.") | |
demo.launch() |