Nymbo's picture
Update app.py
c20c4dd verified
raw
history blame
6.01 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model,
custom_model
):
"""
Handles the chatbot response with given parameters.
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Model: {model}, Custom Model: {custom_model}")
# Use custom model if provided, else use selected model
selected_model = custom_model.strip() if custom_model.strip() else model
print(f"Selected model: {selected_model}")
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via OpenAI-like client
for message_chunk in client.chat.completions.create(
model=selected_model,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed if seed != -1 else None,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Define the featured models for the dropdown
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"bigscience/bloom-176b",
"gpt-j-6b",
"opt-30b",
"flan-t5-xxl",
]
# Function to filter models based on user input
def filter_models(search_term):
return [m for m in models_list if search_term.lower() in m.lower()]
# Gradio interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
with gr.Row():
chatbot = gr.Chatbot(height=600)
with gr.Tab("Chat Interface"):
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
with gr.Row():
system_message = gr.Textbox(value="", label="System Message")
with gr.Row():
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max Tokens")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
with gr.Row():
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
with gr.Row():
model = gr.Dropdown(label="Select a Model", choices=models_list, value="meta-llama/Llama-3.3-70B-Instruct")
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter custom model path")
with gr.Row():
run_button = gr.Button("Generate Response")
with gr.Tab("Information"):
with gr.Accordion("Featured Models", open=False):
gr.HTML(
"""
<table>
<tr><th>Model Name</th><th>Description</th></tr>
<tr><td>meta-llama/Llama-3.3-70B-Instruct</td><td>Instruction-tuned LLaMA model</td></tr>
<tr><td>bigscience/bloom-176b</td><td>Multilingual large language model</td></tr>
<tr><td>gpt-j-6b</td><td>Open-source GPT model</td></tr>
<tr><td>opt-30b</td><td>Meta's OPT model</td></tr>
<tr><td>flan-t5-xxl</td><td>Google's Flan-tuned T5 XXL</td></tr>
</table>
"""
)
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
### Parameters Overview
- **Max Tokens**: Maximum number of tokens in the response.
- **Temperature**: Controls the randomness of responses. Lower values make the output more deterministic.
- **Top-P**: Controls the diversity of responses by limiting the token selection to a probability mass.
- **Frequency Penalty**: Penalizes repeated tokens in the output.
- **Seed**: Fixes randomness for reproducibility. Use -1 for a random seed.
"""
)
run_button.click(
respond,
inputs=[
user_input,
chatbot.state,
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model,
custom_model
],
outputs=chatbot
)
print("Launching the demo application.")
demo.launch()