import gradio as gr from openai import OpenAI import os # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI client with the Hugging Face Inference API endpoint client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model, custom_model ): """ Handles the chatbot response with given parameters. """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Model: {model}, Custom Model: {custom_model}") # Use custom model if provided, else use selected model selected_model = custom_model.strip() if custom_model.strip() else model print(f"Selected model: {selected_model}") # Construct the messages array required by the API messages = [{"role": "system", "content": system_message}] # Add conversation history to the context for val in history: user_part = val[0] assistant_part = val[1] if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) # Start with an empty string to build the response as tokens stream in response = "" print("Sending request to OpenAI API.") # Make the streaming request to the HF Inference API via OpenAI-like client for message_chunk in client.chat.completions.create( model=selected_model, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, seed=seed if seed != -1 else None, messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content print(f"Received token: {token_text}") response += token_text yield response print("Completed response generation.") # Create a Chatbot component chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") # Define the featured models for the dropdown models_list = [ "meta-llama/Llama-3.3-70B-Instruct", "bigscience/bloom-176b", "gpt-j-6b", "opt-30b", "flan-t5-xxl", ] # Function to filter models based on user input def filter_models(search_term): return [m for m in models_list if search_term.lower() in m.lower()] # Gradio interface with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: with gr.Row(): chatbot = gr.Chatbot(height=600) with gr.Tab("Chat Interface"): with gr.Row(): user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...") with gr.Row(): system_message = gr.Textbox(value="", label="System Message") with gr.Row(): max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max Tokens") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") with gr.Row(): top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P") frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") with gr.Row(): model = gr.Dropdown(label="Select a Model", choices=models_list, value="meta-llama/Llama-3.3-70B-Instruct") custom_model = gr.Textbox(label="Custom Model", placeholder="Enter custom model path") with gr.Row(): run_button = gr.Button("Generate Response") with gr.Tab("Information"): with gr.Accordion("Featured Models", open=False): gr.HTML( """
Model Name | Description |
---|---|
meta-llama/Llama-3.3-70B-Instruct | Instruction-tuned LLaMA model |
bigscience/bloom-176b | Multilingual large language model |
gpt-j-6b | Open-source GPT model |
opt-30b | Meta's OPT model |
flan-t5-xxl | Google's Flan-tuned T5 XXL |