Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
custom_model, | |
model, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- custom_model: custom model path (if any) | |
- model: selected model from featured models | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the output | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Custom model: {custom_model}") | |
print(f"Selected model: {model}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Determine which model to use | |
if custom_model.strip(): | |
selected_model = custom_model.strip() | |
else: | |
# Map the display names to actual model paths | |
model_mapping = { | |
"Llama 2 70B": "meta-llama/Llama-2-70b-chat-hf", | |
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Zephyr 7B": "HuggingFaceH4/zephyr-7b-beta", | |
"OpenChat 3.5": "openchat/openchat-3.5-0106", | |
} | |
selected_model = model_mapping.get(model, "meta-llama/Llama-2-70b-chat-hf") | |
# Make the streaming request to the HF Inference API via openai-like client | |
for message_chunk in client.chat.completions.create( | |
model=selected_model, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
yield response | |
print("Completed response generation.") | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# Create the Gradio interface with tabs | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
with gr.Row(): | |
with gr.Column(): | |
# Basic Settings Tab | |
with gr.Tab("Settings"): | |
# System Message | |
system_message = gr.Textbox( | |
value="", | |
label="System message", | |
placeholder="Enter a system message to guide the model's behavior" | |
) | |
# Model Selection Section | |
with gr.Accordion("Featured Models", open=True): | |
# Model Search | |
model_search = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1 | |
) | |
# Featured Models List | |
models_list = [ | |
"Llama 2 70B", | |
"Mixtral 8x7B", | |
"Zephyr 7B", | |
"OpenChat 3.5" | |
] | |
model = gr.Radio( | |
label="Select a model", | |
choices=models_list, | |
value="Llama 2 70B" | |
) | |
# Custom Model Input | |
custom_model = gr.Textbox( | |
label="Custom Model", | |
info="Hugging Face model path (optional)", | |
placeholder="meta-llama/Llama-2-70b-chat-hf" | |
) | |
# Function to filter models | |
def filter_models(search_term): | |
filtered_models = [m for m in models_list if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered_models) | |
# Update model list when search box is used | |
model_search.change(filter_models, inputs=model_search, outputs=model) | |
# Generation Parameters | |
with gr.Row(): | |
max_tokens = gr.Slider( | |
minimum=1, | |
maximum=4096, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
) | |
with gr.Row(): | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P" | |
) | |
frequency_penalty = gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty" | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
minimum=-1, | |
maximum=65535, | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)" | |
) | |
# Information Tab | |
with gr.Tab("Information"): | |
# Featured Models Table | |
with gr.Accordion("Featured Models", open=True): | |
gr.HTML( | |
""" | |
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-to-text">See all available models</a></p> | |
<table style="width:100%; text-align:center; margin:auto;"> | |
<tr> | |
<th>Model Name</th> | |
<th>Size</th> | |
<th>Notes</th> | |
</tr> | |
<tr> | |
<td>Llama 2 70B</td> | |
<td>70B</td> | |
<td>Meta's flagship model</td> | |
</tr> | |
<tr> | |
<td>Mixtral 8x7B</td> | |
<td>47B</td> | |
<td>Mistral AI's MoE model</td> | |
</tr> | |
<tr> | |
<td>Zephyr 7B</td> | |
<td>7B</td> | |
<td>Efficient fine-tuned model</td> | |
</tr> | |
<tr> | |
<td>OpenChat 3.5</td> | |
<td>7B</td> | |
<td>High performance chat model</td> | |
</tr> | |
</table> | |
""" | |
) | |
# Parameters Overview | |
with gr.Accordion("Parameters Overview", open=False): | |
gr.Markdown( | |
""" | |
## System Message | |
A message that sets the context and behavior for the model. This helps guide the model's responses. | |
## Max New Tokens | |
Controls the maximum length of the generated response. Higher values allow for longer outputs but may take more time. | |
## Temperature | |
Controls randomness in the output: | |
- Lower values (0.1-0.5): More focused and deterministic | |
- Higher values (0.7-1.0): More creative and diverse | |
- Very high values (>1.0): More random and potentially chaotic | |
## Top-P (Nucleus Sampling) | |
Controls the cumulative probability threshold for token selection: | |
- Lower values: More focused on highly likely tokens | |
- Higher values: Considers a wider range of possibilities | |
## Frequency Penalty | |
Adjusts the likelihood of token repetition: | |
- Negative values: May encourage repetition | |
- Zero: Neutral | |
- Positive values: Discourages repetition | |
## Seed | |
A number that controls the randomness in generation: | |
- -1: Random seed each time | |
- Fixed value: Reproducible outputs with same parameters | |
""" | |
) | |
# Set up the chat interface | |
chatbot = gr.Chatbot(height=600) | |
msg = gr.Textbox(label="Message") | |
clear = gr.ClearButton([msg, chatbot]) | |
msg.submit(respond, [msg, chatbot, system_message, custom_model, model, max_tokens, temperature, top_p, frequency_penalty, seed], [chatbot, msg]) | |
print("Launching the demo application.") | |
demo.launch(show_api=False, share=False) |