Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# ============================= | |
# GLOBAL SETUP / CLIENT | |
# ============================= | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
# ============================= | |
# MODEL CONFIG / LOGIC | |
# ============================= | |
# Sample placeholder list of "featured" models for demonstration | |
featured_models_list = [ | |
"meta-llama/Llama-2-13B-chat-hf", | |
"bigscience/bloom", | |
"microsoft/DialoGPT-large", | |
"OpenAssistant/oasst-sft-1-pythia-12b", | |
"tiiuae/falcon-7b-instruct", | |
"meta-llama/Llama-3.3-70B-Instruct" | |
] | |
def filter_featured_models(search_term: str): | |
""" | |
Returns a list of models that contain the search term (case-insensitive). | |
""" | |
filtered = [m for m in featured_models_list if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
selected_featured_model | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens, temperature, top_p, frequency_penalty, seed: generation params | |
- custom_model: user-provided custom model path/name | |
- selected_featured_model: model chosen from the featured radio list | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Custom model: {custom_model}") | |
print(f"Selected featured model: {selected_featured_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] if system_message.strip() else [] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Determine which model to use: | |
# 1) If custom_model is non-empty, it overrides everything. | |
# 2) Otherwise, use the selected featured model from the radio button if available. | |
# 3) If both are empty, fall back to the default. | |
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" # Default | |
if custom_model.strip() != "": | |
model_to_use = custom_model.strip() | |
elif selected_featured_model.strip() != "": | |
model_to_use = selected_featured_model.strip() | |
print(f"Model selected for inference: {model_to_use}") | |
# Start building the streaming response | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Make the streaming request to the HF Inference API via openai-like client | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, # Stream the response | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}", flush=True) | |
response += token_text | |
# Yield the partial response to Gradio so it can display in real-time | |
yield response | |
print("Completed response generation.") | |
# ============================= | |
# MAIN UI | |
# ============================= | |
def build_app(): | |
""" | |
Build the Gradio Blocks interface containing: | |
- A Chat tab (ChatInterface) | |
- A Featured Models tab | |
- An Information tab | |
""" | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as main_interface: | |
# We define a Gr.State to hold the user's chosen featured model | |
selected_featured_model_state = gr.State("") | |
with gr.Tab("Chat Interface"): | |
gr.Markdown("## Serverless-TextGen-Hub") | |
# Here we embed the ChatInterface for streaming conversation | |
# We add extra inputs for "Selected Featured Model" as hidden, | |
# so the user can't directly edit but it flows into respond(). | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message", lines=2), | |
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"), | |
gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"), | |
gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom HF model path"), | |
gr.Textbox(value="", label="Selected Featured Model (from tab)", visible=False), | |
], | |
fill_height=True, | |
chatbot=gr.Chatbot(height=600), | |
theme="Nymbo/Nymbo_Theme", | |
) | |
# We want to connect the selected_featured_model_state to that hidden text box | |
def set_featured_model_in_chatbox(val): | |
return val | |
# Whenever the selected_featured_model_state changes, update the hidden field in the ChatInterface | |
selected_featured_model_state.change( | |
fn=set_featured_model_in_chatbox, | |
inputs=selected_featured_model_state, | |
outputs=demo.additional_inputs[-1], # The last additional input is the "Selected Featured Model" | |
) | |
# ========================== | |
# Featured Models Tab | |
# ========================== | |
with gr.Tab("Featured Models"): | |
gr.Markdown("### Choose from our Featured Models") | |
# A text box for searching/filtering | |
model_search = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model..." | |
) | |
# A radio component listing the featured models (default to first) | |
model_radio = gr.Radio( | |
choices=featured_models_list, | |
label="Select a model below", | |
value=featured_models_list[0], | |
interactive=True | |
) | |
# Define how to update the radio choices when the search box changes | |
model_search.change( | |
fn=filter_featured_models, | |
inputs=model_search, | |
outputs=model_radio | |
) | |
# Button to confirm the selection | |
def select_featured_model(radio_val): | |
""" | |
Updates the hidden state with the user-chosen featured model. | |
""" | |
return radio_val | |
choose_btn = gr.Button("Use this Featured Model", variant="primary") | |
choose_btn.click( | |
fn=select_featured_model, | |
inputs=model_radio, | |
outputs=selected_featured_model_state | |
) | |
gr.Markdown( | |
""" | |
**Tip**: If you type a Custom Model in the "Chat Interface" tab, it overrides the | |
featured model you selected here. | |
""" | |
) | |
# ========================== | |
# Information Tab | |
# ========================== | |
with gr.Tab("Information"): | |
gr.Markdown("## Learn More About These Models and Parameters") | |
with gr.Accordion("Featured Models (Table)", open=False): | |
gr.HTML( | |
""" | |
<p>Below is a small sample table showing some featured models.</p> | |
<table style="width:100%; text-align:center; margin:auto;"> | |
<tr> | |
<th>Model Name</th> | |
<th>Type</th> | |
<th>Notes</th> | |
</tr> | |
<tr> | |
<td>meta-llama/Llama-2-13B-chat-hf</td> | |
<td>Chat</td> | |
<td>Good for multi-turn dialogue.</td> | |
</tr> | |
<tr> | |
<td>bigscience/bloom</td> | |
<td>Language Model</td> | |
<td>Large multilingual model.</td> | |
</tr> | |
<tr> | |
<td>microsoft/DialoGPT-large</td> | |
<td>Chat</td> | |
<td>Well-known smaller chat model.</td> | |
</tr> | |
</table> | |
""" | |
) | |
with gr.Accordion("Parameters Overview", open=False): | |
gr.Markdown( | |
""" | |
### Explanation of Key Parameters | |
- **System Message**: Provides context or initial instructions to the model. | |
- **Max Tokens**: The maximum number of tokens (roughly pieces of words) in the generated response. | |
- **Temperature**: Higher values produce more random/creative outputs, while lower values make the output more focused and deterministic. | |
- **Top-P**: Controls nucleus sampling. The model considers only the tokens whose probability mass exceeds this value. | |
- **Frequency Penalty**: Penalizes repeated tokens. Positive values (like 1.0) reduce repetition in the output. Negative values can increase repetition. | |
- **Seed**: Determines reproducibility. Set it to a fixed integer for consistent results; `-1` is random each time. | |
- **Custom Model**: Overwrites the featured model. Provide the Hugging Face path (e.g., `openai/whisper-base`) for your own usage. | |
Use these settings to guide how the model generates text. If in doubt, stick to defaults and experiment in small increments. | |
""" | |
) | |
return main_interface | |
# If run as a standalone script, just launch. | |
if __name__ == "__main__": | |
print("Building and launching the Serverless-TextGen-Hub interface...") | |
ui = build_app() | |
ui.launch() |