Spaces:
Running
Running
File size: 11,507 Bytes
038f313 4c18bfc 038f313 8696822 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 8696822 038f313 e13eb1b 69b4a5f 038f313 3a64d68 98674ca 8696822 038f313 e13eb1b 52ad57a 8696822 e13eb1b f7c4208 86297f5 52ad57a 98674ca 8696822 f7c4208 52ad57a 038f313 e13eb1b 8696822 f7c4208 e13eb1b 86297f5 e13eb1b 038f313 8696822 98674ca 8696822 038f313 b56d11c f7c4208 52ad57a e13eb1b 8696822 038f313 8696822 038f313 98674ca 86297f5 038f313 f7c4208 86297f5 8696822 b56d11c 9b9dccd b56d11c 542c2ac e13eb1b f7c4208 8696822 52ad57a 8696822 52ad57a 8696822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
from openai import OpenAI
import os
# =============================
# GLOBAL SETUP / CLIENT
# =============================
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
# =============================
# MODEL CONFIG / LOGIC
# =============================
# Sample placeholder list of "featured" models for demonstration
featured_models_list = [
"meta-llama/Llama-2-13B-chat-hf",
"bigscience/bloom",
"microsoft/DialoGPT-large",
"OpenAssistant/oasst-sft-1-pythia-12b",
"tiiuae/falcon-7b-instruct",
"meta-llama/Llama-3.3-70B-Instruct"
]
def filter_featured_models(search_term: str):
"""
Returns a list of models that contain the search term (case-insensitive).
"""
filtered = [m for m in featured_models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
selected_featured_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens, temperature, top_p, frequency_penalty, seed: generation params
- custom_model: user-provided custom model path/name
- selected_featured_model: model chosen from the featured radio list
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Selected featured model: {selected_featured_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}] if system_message.strip() else []
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Determine which model to use:
# 1) If custom_model is non-empty, it overrides everything.
# 2) Otherwise, use the selected featured model from the radio button if available.
# 3) If both are empty, fall back to the default.
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" # Default
if custom_model.strip() != "":
model_to_use = custom_model.strip()
elif selected_featured_model.strip() != "":
model_to_use = selected_featured_model.strip()
print(f"Model selected for inference: {model_to_use}")
# Start building the streaming response
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}", flush=True)
response += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response
print("Completed response generation.")
# =============================
# MAIN UI
# =============================
def build_app():
"""
Build the Gradio Blocks interface containing:
- A Chat tab (ChatInterface)
- A Featured Models tab
- An Information tab
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as main_interface:
# We define a Gr.State to hold the user's chosen featured model
selected_featured_model_state = gr.State("")
with gr.Tab("Chat Interface"):
gr.Markdown("## Serverless-TextGen-Hub")
# Here we embed the ChatInterface for streaming conversation
# We add extra inputs for "Selected Featured Model" as hidden,
# so the user can't directly edit but it flows into respond().
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="", label="System message", lines=2),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"),
gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"),
gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom HF model path"),
gr.Textbox(value="", label="Selected Featured Model (from tab)", visible=False),
],
fill_height=True,
chatbot=gr.Chatbot(height=600),
theme="Nymbo/Nymbo_Theme",
)
# We want to connect the selected_featured_model_state to that hidden text box
def set_featured_model_in_chatbox(val):
return val
# Whenever the selected_featured_model_state changes, update the hidden field in the ChatInterface
selected_featured_model_state.change(
fn=set_featured_model_in_chatbox,
inputs=selected_featured_model_state,
outputs=demo.additional_inputs[-1], # The last additional input is the "Selected Featured Model"
)
# ==========================
# Featured Models Tab
# ==========================
with gr.Tab("Featured Models"):
gr.Markdown("### Choose from our Featured Models")
# A text box for searching/filtering
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model..."
)
# A radio component listing the featured models (default to first)
model_radio = gr.Radio(
choices=featured_models_list,
label="Select a model below",
value=featured_models_list[0],
interactive=True
)
# Define how to update the radio choices when the search box changes
model_search.change(
fn=filter_featured_models,
inputs=model_search,
outputs=model_radio
)
# Button to confirm the selection
def select_featured_model(radio_val):
"""
Updates the hidden state with the user-chosen featured model.
"""
return radio_val
choose_btn = gr.Button("Use this Featured Model", variant="primary")
choose_btn.click(
fn=select_featured_model,
inputs=model_radio,
outputs=selected_featured_model_state
)
gr.Markdown(
"""
**Tip**: If you type a Custom Model in the "Chat Interface" tab, it overrides the
featured model you selected here.
"""
)
# ==========================
# Information Tab
# ==========================
with gr.Tab("Information"):
gr.Markdown("## Learn More About These Models and Parameters")
with gr.Accordion("Featured Models (Table)", open=False):
gr.HTML(
"""
<p>Below is a small sample table showing some featured models.</p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Type</th>
<th>Notes</th>
</tr>
<tr>
<td>meta-llama/Llama-2-13B-chat-hf</td>
<td>Chat</td>
<td>Good for multi-turn dialogue.</td>
</tr>
<tr>
<td>bigscience/bloom</td>
<td>Language Model</td>
<td>Large multilingual model.</td>
</tr>
<tr>
<td>microsoft/DialoGPT-large</td>
<td>Chat</td>
<td>Well-known smaller chat model.</td>
</tr>
</table>
"""
)
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
### Explanation of Key Parameters
- **System Message**: Provides context or initial instructions to the model.
- **Max Tokens**: The maximum number of tokens (roughly pieces of words) in the generated response.
- **Temperature**: Higher values produce more random/creative outputs, while lower values make the output more focused and deterministic.
- **Top-P**: Controls nucleus sampling. The model considers only the tokens whose probability mass exceeds this value.
- **Frequency Penalty**: Penalizes repeated tokens. Positive values (like 1.0) reduce repetition in the output. Negative values can increase repetition.
- **Seed**: Determines reproducibility. Set it to a fixed integer for consistent results; `-1` is random each time.
- **Custom Model**: Overwrites the featured model. Provide the Hugging Face path (e.g., `openai/whisper-base`) for your own usage.
Use these settings to guide how the model generates text. If in doubt, stick to defaults and experiment in small increments.
"""
)
return main_interface
# If run as a standalone script, just launch.
if __name__ == "__main__":
print("Building and launching the Serverless-TextGen-Hub interface...")
ui = build_app()
ui.launch() |