Nymbo's picture
Update app.py
7d3730f verified
raw
history blame
5.94 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model_selection,
custom_model
):
"""
This function handles the chatbot response.
"""
selected_model = custom_model if custom_model.strip() != "" else model_selection
print(f"Selected model: {selected_model}")
if seed == -1:
seed = None
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat.completions.create(
model=selected_model,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
response += token_text
yield response
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
# Define placeholder models
featured_models = [
"meta-llama/Llama-3.3-70B-Instruct",
"gpt2",
"bert-base-uncased",
"facebook/bart-base",
"google/flan-t5-base"
]
# Create the Gradio ChatInterface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("# Serverless Text Generation Hub")
with gr.Tab("Basic Settings"):
with gr.Row():
with gr.Column():
# Textbox for system message
system_message = gr.Textbox(value="", label="System message")
with gr.Row():
with gr.Column():
# Model selection
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...")
model = gr.Radio(label="Select a model", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct")
def filter_models(search_term):
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
model_search.change(filter_models, inputs=model_search, outputs=model)
with gr.Row():
with gr.Column():
# Custom model input
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model name")
with gr.Tab("Advanced Settings"):
with gr.Row():
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
with gr.Row():
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
with gr.Row():
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
with gr.Tab("Information"):
with gr.Accordion("Featured Models", open=False):
gr.Markdown(
"""
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Description</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>Highly capable Llama model</td>
</tr>
<tr>
<td>gpt2</td>
<td>Generative Pre-trained Transformer 2</td>
</tr>
<tr>
<td>bert-base-uncased</td>
<td>Bidirectional Encoder Representations from Transformers</td>
</tr>
</table>
"""
)
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
## System Message
###### Sets the behavior and tone of the assistant.
## Max New Tokens
###### Determines the maximum length of the response.
## Temperature
###### Controls the randomness of the output. Lower values make the output more deterministic.
## Top-P
###### Used for nucleus sampling. Higher values include more tokens in consideration.
## Frequency Penalty
###### Penalizes the model for repeating the same tokens.
## Seed
###### Ensures reproducibility of results.
"""
)
# Chat interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model,
custom_model
],
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme"
)
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()