Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
model_selection, | |
custom_model | |
): | |
""" | |
This function handles the chatbot response. | |
""" | |
selected_model = custom_model if custom_model.strip() != "" else model_selection | |
print(f"Selected model: {selected_model}") | |
if seed == -1: | |
seed = None | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message_chunk in client.chat.completions.create( | |
model=selected_model, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
token_text = message_chunk.choices[0].delta.content | |
response += token_text | |
yield response | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
# Define placeholder models | |
featured_models = [ | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"gpt2", | |
"bert-base-uncased", | |
"facebook/bart-base", | |
"google/flan-t5-base" | |
] | |
# Create the Gradio ChatInterface | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.Markdown("# Serverless Text Generation Hub") | |
with gr.Tab("Basic Settings"): | |
with gr.Row(): | |
with gr.Column(): | |
# Textbox for system message | |
system_message = gr.Textbox(value="", label="System message") | |
with gr.Row(): | |
with gr.Column(): | |
# Model selection | |
with gr.Accordion("Featured Models", open=True): | |
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...") | |
model = gr.Radio(label="Select a model", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct") | |
def filter_models(search_term): | |
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered_models) | |
model_search.change(filter_models, inputs=model_search, outputs=model) | |
with gr.Row(): | |
with gr.Column(): | |
# Custom model input | |
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model name") | |
with gr.Tab("Advanced Settings"): | |
with gr.Row(): | |
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
with gr.Row(): | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") | |
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
with gr.Row(): | |
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") | |
with gr.Tab("Information"): | |
with gr.Accordion("Featured Models", open=False): | |
gr.Markdown( | |
""" | |
<table style="width:100%; text-align:center; margin:auto;"> | |
<tr> | |
<th>Model Name</th> | |
<th>Description</th> | |
</tr> | |
<tr> | |
<td>meta-llama/Llama-3.3-70B-Instruct</td> | |
<td>Highly capable Llama model</td> | |
</tr> | |
<tr> | |
<td>gpt2</td> | |
<td>Generative Pre-trained Transformer 2</td> | |
</tr> | |
<tr> | |
<td>bert-base-uncased</td> | |
<td>Bidirectional Encoder Representations from Transformers</td> | |
</tr> | |
</table> | |
""" | |
) | |
with gr.Accordion("Parameters Overview", open=False): | |
gr.Markdown( | |
""" | |
## System Message | |
###### Sets the behavior and tone of the assistant. | |
## Max New Tokens | |
###### Determines the maximum length of the response. | |
## Temperature | |
###### Controls the randomness of the output. Lower values make the output more deterministic. | |
## Top-P | |
###### Used for nucleus sampling. Higher values include more tokens in consideration. | |
## Frequency Penalty | |
###### Penalizes the model for repeating the same tokens. | |
## Seed | |
###### Ensures reproducibility of results. | |
""" | |
) | |
# Chat interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
model, | |
custom_model | |
], | |
chatbot=chatbot, | |
theme="Nymbo/Nymbo_Theme" | |
) | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |