Spaces:
Running
Running
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| # Retrieve the access token from the environment variable | |
| ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| print("Access token loaded.") | |
| # Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1/", | |
| api_key=ACCESS_TOKEN, | |
| ) | |
| print("OpenAI client initialized.") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| frequency_penalty, | |
| seed, | |
| custom_model | |
| ): | |
| """ | |
| This function handles the chatbot response. It takes in: | |
| - message: the user's new message | |
| - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
| - system_message: the system prompt | |
| - max_tokens: the maximum number of tokens to generate in the response | |
| - temperature: sampling temperature | |
| - top_p: top-p (nucleus) sampling | |
| - frequency_penalty: penalize repeated tokens in the output | |
| - seed: a fixed seed for reproducibility; -1 will mean 'random' | |
| - custom_model: the user-provided custom model name (if any) | |
| """ | |
| print(f"Received message: {message}") | |
| print(f"History: {history}") | |
| print(f"System message: {system_message}") | |
| print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
| print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
| print(f"Custom model: {custom_model}") | |
| # Convert seed to None if -1 (meaning random) | |
| if seed == -1: | |
| seed = None | |
| # Construct the messages array required by the API | |
| messages = [{"role": "system", "content": system_message}] | |
| # Add conversation history to the context | |
| for val in history: | |
| user_part = val[0] | |
| assistant_part = val[1] | |
| if user_part: | |
| messages.append({"role": "user", "content": user_part}) | |
| print(f"Added user message to context: {user_part}") | |
| if assistant_part: | |
| messages.append({"role": "assistant", "content": assistant_part}) | |
| print(f"Added assistant message to context: {assistant_part}") | |
| # Append the latest user message | |
| messages.append({"role": "user", "content": message}) | |
| # Determine which model to use: either custom_model or a default | |
| model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" | |
| print(f"Model selected for inference: {model_to_use}") | |
| # Start with an empty string to build the response as tokens stream in | |
| response = "" | |
| print("Sending request to OpenAI API.") | |
| # Make the streaming request to the HF Inference API via openai-like client | |
| for message_chunk in client.chat.completions.create( | |
| model=model_to_use, # Use either the user-provided custom model or default | |
| max_tokens=max_tokens, | |
| stream=True, # Stream the response | |
| temperature=temperature, | |
| top_p=top_p, | |
| frequency_penalty=frequency_penalty, | |
| seed=seed, | |
| messages=messages, | |
| ): | |
| # Extract the token text from the response chunk | |
| token_text = message_chunk.choices[0].delta.content | |
| print(f"Received token: {token_text}") | |
| response += token_text | |
| # Yield the partial response to Gradio so it can display in real-time | |
| yield response | |
| print("Completed response generation.") | |
| # Create a Chatbot component with a specified height | |
| chatbot = gr.Chatbot(height=600) | |
| print("Chatbot interface created.") | |
| # Create the Gradio ChatInterface | |
| # We add two new sliders for Frequency Penalty, Seed, and now a new "Custom Model" text box. | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="", label="System message"), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=4096, | |
| value=512, | |
| step=1, | |
| label="Max new tokens" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-P" | |
| ), | |
| gr.Slider( | |
| minimum=-2.0, | |
| maximum=2.0, | |
| value=0.0, | |
| step=0.1, | |
| label="Frequency Penalty" | |
| ), | |
| gr.Slider( | |
| minimum=-1, | |
| maximum=65535, | |
| value=-1, | |
| step=1, | |
| label="Seed (-1 for random)" | |
| ), | |
| gr.Textbox( | |
| value="", | |
| label="Custom Model", | |
| info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty." | |
| ), | |
| ], | |
| fill_height=True, | |
| chatbot=chatbot, | |
| theme="Nymbo/Nymbo_Theme", | |
| ) | |
| print("Gradio interface initialized.") | |
| # -------------------------------------------------------- | |
| # NEW FEATURE: "Featured Models" Accordion with Filtering | |
| # Adapted from Serverless-ImgGen-Hub's approach | |
| # -------------------------------------------------------- | |
| with demo: | |
| with gr.Accordion("Featured Models", open=False): | |
| # Textbox to search/filter models | |
| model_search = gr.Textbox( | |
| label="Filter Models", | |
| placeholder="Search for a featured model...", | |
| lines=1 | |
| ) | |
| # For demonstration purposes, here is a sample list of possible text-generation models | |
| models_list = [ | |
| "meta-llama/Llama-3.3-70B-Instruct", | |
| "bigscience/bloomz-7b1", | |
| "OpenAssistant/oasst-sft-1-pythia-12b", | |
| "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", | |
| "tiiuae/falcon-7b-instruct", | |
| "OpenAI/gpt-3.5-turbo", | |
| "OpenAI/gpt-4-32k", | |
| "meta-llama/Llama-2-13B-chat-hf", | |
| "meta-llama/Llama-2-70B-chat-hf", | |
| ] | |
| # Radio buttons to display and select from the featured models | |
| # This won't directly override the "Custom Model" field, but you can copy it from here | |
| featured_model = gr.Radio( | |
| label="Select a model below", | |
| choices=models_list, | |
| value="meta-llama/Llama-3.3-70B-Instruct", | |
| interactive=True | |
| ) | |
| # Filtering function to update model list based on search input | |
| def filter_models(search_term): | |
| # Filter the list by checking if the search term is in each model name | |
| filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
| return gr.update(choices=filtered) | |
| # When the user types in the search box, we update the featured_model radio choices | |
| model_search.change(filter_models, inputs=model_search, outputs=featured_model) | |
| if __name__ == "__main__": | |
| print("Launching the demo application.") | |
| demo.launch() |