Spaces:
Running
Running
File size: 6,959 Bytes
038f313 fab24df c5a20a4 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 27c8b8d 038f313 3a64d68 98674ca c5a20a4 038f313 e13eb1b 7255410 c5a20a4 e13eb1b 7255410 27c8b8d 7de1759 f7c4208 c5a20a4 52ad57a 038f313 c5a20a4 27c8b8d c5a20a4 27c8b8d c5a20a4 27c8b8d c5a20a4 77298b9 c5a20a4 27c8b8d c5a20a4 27c8b8d c5a20a4 27c8b8d c5a20a4 27c8b8d c5a20a4 27c8b8d 542c2ac e13eb1b f7c4208 c5a20a4 769901b c5a20a4 27c8b8d c5a20a4 e7683ca 769901b 77298b9 27c8b8d 77298b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: the user-provided custom model name (if any)
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Determine which model to use: either custom_model or a default
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use, # Use either the user-provided custom model or default
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Create the Gradio ChatInterface
# We add two new sliders for Frequency Penalty, Seed, and now a new "Custom Model" text box.
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
),
gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
),
gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
),
gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty."
),
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface initialized.")
# --------------------------------------------------------
# NEW FEATURE: "Featured Models" Accordion with Filtering
# Adapted from Serverless-ImgGen-Hub's approach
# --------------------------------------------------------
with demo:
with gr.Accordion("Featured Models", open=False):
# Textbox to search/filter models
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
# For demonstration purposes, here is a sample list of possible text-generation models
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"bigscience/bloomz-7b1",
"OpenAssistant/oasst-sft-1-pythia-12b",
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"tiiuae/falcon-7b-instruct",
"OpenAI/gpt-3.5-turbo",
"OpenAI/gpt-4-32k",
"meta-llama/Llama-2-13B-chat-hf",
"meta-llama/Llama-2-70B-chat-hf",
]
# Radio buttons to display and select from the featured models
# This won't directly override the "Custom Model" field, but you can copy it from here
featured_model = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
# Filtering function to update model list based on search input
def filter_models(search_term):
# Filter the list by checking if the search term is in each model name
filtered = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered)
# When the user types in the search box, we update the featured_model radio choices
model_search.change(filter_models, inputs=model_search, outputs=featured_model)
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |