Nymbo's picture
Update app.py
6a2e496 verified
raw
history blame
8.32 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
# We'll define a list of placeholder featured models for demonstration.
# In real usage, replace them with actual model names available on Hugging Face.
models_list = [
"meta-llama/Llama-3.1-8B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct"
]
def filter_featured_models(search_term):
"""
Filters the 'models_list' based on text entered in the search box.
Returns a gr.update object that changes the choices available
in the 'featured_models_radio'.
"""
filtered = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
selected_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: a custom Hugging Face model name (if any)
- selected_model: a model name chosen from the featured models radio button
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Selected featured model: {selected_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Decide which model to use:
# 1) If the user provided a custom model, use it.
# 2) Else if they chose a featured model, use it.
# 3) Otherwise, fall back to a default model.
if custom_model.strip() != "":
model_to_use = custom_model.strip()
elif selected_model is not None and selected_model.strip() != "":
model_to_use = selected_model.strip()
else:
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" # Default fallback
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response
print("Completed response generation.")
########################
# GRADIO APP LAYOUT
########################
# We’ll build a custom Blocks layout so we can have:
# - A Featured Models accordion with a search box
# - Our ChatInterface to handle the conversation
# - Additional sliders and textboxes for settings (like the original code)
########################
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("## Serverless Text Generation Hub")
gr.Markdown(
"An all-in-one UI for chatting with text-generation models on Hugging Face's Inference API."
)
# We keep a Chatbot component for the conversation display
chatbot = gr.Chatbot(height=600, label="Chat Preview")
# Textbox for system message
system_message_box = gr.Textbox(
value="",
label="System Message",
placeholder="Enter a system prompt if you want (optional).",
)
# Slider for max_tokens
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens",
)
# Slider for temperature
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
# Slider for top_p
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
# Slider for frequency penalty
freq_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty",
)
# Slider for seed
seed_slider = gr.Slider(
minimum=-1,
maximum=65535, # Arbitrary upper limit for demonstration
value=-1,
step=1,
label="Seed (-1 for random)",
)
# Custom Model textbox
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. This will override the selected Featured Model if not empty."
)
# Accordion for featured models
with gr.Accordion("Featured Models", open=False):
# Textbox for filtering the featured models
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1,
)
# Radio for selecting the desired model
featured_models_radio = gr.Radio(
label="Select a featured model below",
choices=models_list, # Start with the entire list
value=None, # No default
interactive=True
)
# We connect the model_search_box to the filter function
model_search_box.change(
filter_featured_models,
inputs=model_search_box,
outputs=featured_models_radio
)
# Now we create our ChatInterface
# We pass all the extra components as additional_inputs
interface = gr.ChatInterface(
fn=respond,
chatbot=chatbot,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
freq_penalty_slider,
seed_slider,
custom_model_box,
featured_models_radio
],
theme="Nymbo/Nymbo_Theme",
title="Serverless TextGen Hub with Featured Models",
description=(
"Use the sliders and textboxes to control generation parameters. "
"Pick a model from 'Featured Models' or specify a custom model path."
),
# Fill the screen height
fill_height=True
)
# If you want the script to be directly executable, launch the demo here:
if __name__ == "__main__":
print("Launching the demo application...")
demo.launch()