Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
# We'll define a list of placeholder featured models for demonstration. | |
# In real usage, replace them with actual model names available on Hugging Face. | |
models_list = [ | |
"meta-llama/Llama-3.1-8B-Instruct", | |
"microsoft/Phi-3.5-mini-instruct", | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"Qwen/Qwen2.5-72B-Instruct" | |
] | |
def filter_featured_models(search_term): | |
""" | |
Filters the 'models_list' based on text entered in the search box. | |
Returns a gr.update object that changes the choices available | |
in the 'featured_models_radio'. | |
""" | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
selected_model | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the output | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
- custom_model: a custom Hugging Face model name (if any) | |
- selected_model: a model name chosen from the featured models radio button | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Custom model: {custom_model}") | |
print(f"Selected featured model: {selected_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Decide which model to use: | |
# 1) If the user provided a custom model, use it. | |
# 2) Else if they chose a featured model, use it. | |
# 3) Otherwise, fall back to a default model. | |
if custom_model.strip() != "": | |
model_to_use = custom_model.strip() | |
elif selected_model is not None and selected_model.strip() != "": | |
model_to_use = selected_model.strip() | |
else: | |
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" # Default fallback | |
print(f"Model selected for inference: {model_to_use}") | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Make the streaming request to the HF Inference API via openai-like client | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
# Yield the partial response to Gradio so it can display in real-time | |
yield response | |
print("Completed response generation.") | |
######################## | |
# GRADIO APP LAYOUT | |
######################## | |
# We’ll build a custom Blocks layout so we can have: | |
# - A Featured Models accordion with a search box | |
# - Our ChatInterface to handle the conversation | |
# - Additional sliders and textboxes for settings (like the original code) | |
######################## | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.Markdown("## Serverless Text Generation Hub") | |
gr.Markdown( | |
"An all-in-one UI for chatting with text-generation models on Hugging Face's Inference API." | |
) | |
# We keep a Chatbot component for the conversation display | |
chatbot = gr.Chatbot(height=600, label="Chat Preview") | |
# Textbox for system message | |
system_message_box = gr.Textbox( | |
value="", | |
label="System Message", | |
placeholder="Enter a system prompt if you want (optional).", | |
) | |
# Slider for max_tokens | |
max_tokens_slider = gr.Slider( | |
minimum=1, | |
maximum=4096, | |
value=512, | |
step=1, | |
label="Max new tokens", | |
) | |
# Slider for temperature | |
temperature_slider = gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
) | |
# Slider for top_p | |
top_p_slider = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P", | |
) | |
# Slider for frequency penalty | |
freq_penalty_slider = gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty", | |
) | |
# Slider for seed | |
seed_slider = gr.Slider( | |
minimum=-1, | |
maximum=65535, # Arbitrary upper limit for demonstration | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)", | |
) | |
# Custom Model textbox | |
custom_model_box = gr.Textbox( | |
value="", | |
label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. This will override the selected Featured Model if not empty." | |
) | |
# Accordion for featured models | |
with gr.Accordion("Featured Models", open=False): | |
# Textbox for filtering the featured models | |
model_search_box = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1, | |
) | |
# Radio for selecting the desired model | |
featured_models_radio = gr.Radio( | |
label="Select a featured model below", | |
choices=models_list, # Start with the entire list | |
value=None, # No default | |
interactive=True | |
) | |
# We connect the model_search_box to the filter function | |
model_search_box.change( | |
filter_featured_models, | |
inputs=model_search_box, | |
outputs=featured_models_radio | |
) | |
# Now we create our ChatInterface | |
# We pass all the extra components as additional_inputs | |
interface = gr.ChatInterface( | |
fn=respond, | |
chatbot=chatbot, | |
additional_inputs=[ | |
system_message_box, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
freq_penalty_slider, | |
seed_slider, | |
custom_model_box, | |
featured_models_radio | |
], | |
theme="Nymbo/Nymbo_Theme", | |
title="Serverless TextGen Hub with Featured Models", | |
description=( | |
"Use the sliders and textboxes to control generation parameters. " | |
"Pick a model from 'Featured Models' or specify a custom model path." | |
), | |
# Fill the screen height | |
fill_height=True | |
) | |
# If you want the script to be directly executable, launch the demo here: | |
if __name__ == "__main__": | |
print("Launching the demo application...") | |
demo.launch() |