File size: 8,322 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
e13eb1b
038f313
e13eb1b
038f313
 
 
 
e13eb1b
038f313
10ffb1d
 
 
6a2e496
 
 
 
8696822
 
10ffb1d
8696822
10ffb1d
 
 
8696822
10ffb1d
8696822
 
 
038f313
 
e13eb1b
69b4a5f
038f313
 
 
3a64d68
98674ca
8696822
10ffb1d
038f313
e13eb1b
52ad57a
 
 
 
10ffb1d
 
 
 
 
 
 
e13eb1b
10ffb1d
f7c4208
 
86297f5
52ad57a
 
98674ca
10ffb1d
f7c4208
52ad57a
 
 
038f313
e13eb1b
10ffb1d
f7c4208
 
e13eb1b
 
 
 
 
 
86297f5
e13eb1b
 
 
 
038f313
 
10ffb1d
 
 
 
8696822
 
10ffb1d
 
 
 
8696822
98674ca
 
10ffb1d
038f313
b56d11c
f7c4208
52ad57a
e13eb1b
8696822
038f313
10ffb1d
038f313
 
98674ca
 
86297f5
038f313
f7c4208
86297f5
10ffb1d
b56d11c
9b9dccd
b56d11c
542c2ac
e13eb1b
f7c4208
8696822
10ffb1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ad57a
10ffb1d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

# We'll define a list of placeholder featured models for demonstration.
# In real usage, replace them with actual model names available on Hugging Face.
models_list = [
    "meta-llama/Llama-3.1-8B-Instruct",
    "microsoft/Phi-3.5-mini-instruct",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "Qwen/Qwen2.5-72B-Instruct"
]

def filter_featured_models(search_term):
    """
    Filters the 'models_list' based on text entered in the search box.
    Returns a gr.update object that changes the choices available
    in the 'featured_models_radio'.
    """
    filtered = [m for m in models_list if search_term.lower() in m.lower()]
    return gr.update(choices=filtered)


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model,
    selected_model
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    - custom_model: a custom Hugging Face model name (if any)
    - selected_model: a model name chosen from the featured models radio button
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Custom model: {custom_model}")
    print(f"Selected featured model: {selected_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Decide which model to use:
    # 1) If the user provided a custom model, use it.
    # 2) Else if they chose a featured model, use it.
    # 3) Otherwise, fall back to a default model.
    if custom_model.strip() != "":
        model_to_use = custom_model.strip()
    elif selected_model is not None and selected_model.strip() != "":
        model_to_use = selected_model.strip()
    else:
        model_to_use = "meta-llama/Llama-3.3-70B-Instruct"  # Default fallback

    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model=model_to_use,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        # Yield the partial response to Gradio so it can display in real-time
        yield response

    print("Completed response generation.")


########################
# GRADIO APP LAYOUT
########################

# We’ll build a custom Blocks layout so we can have:
#  - A Featured Models accordion with a search box
#  - Our ChatInterface to handle the conversation
#  - Additional sliders and textboxes for settings (like the original code)
########################

with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    gr.Markdown("## Serverless Text Generation Hub")
    gr.Markdown(
        "An all-in-one UI for chatting with text-generation models on Hugging Face's Inference API."
    )

    # We keep a Chatbot component for the conversation display
    chatbot = gr.Chatbot(height=600, label="Chat Preview")

    # Textbox for system message
    system_message_box = gr.Textbox(
        value="",
        label="System Message",
        placeholder="Enter a system prompt if you want (optional).",
    )

    # Slider for max_tokens
    max_tokens_slider = gr.Slider(
        minimum=1,
        maximum=4096,
        value=512,
        step=1,
        label="Max new tokens",
    )

    # Slider for temperature
    temperature_slider = gr.Slider(
        minimum=0.1,
        maximum=4.0,
        value=0.7,
        step=0.1,
        label="Temperature",
    )

    # Slider for top_p
    top_p_slider = gr.Slider(
        minimum=0.1,
        maximum=1.0,
        value=0.95,
        step=0.05,
        label="Top-P",
    )

    # Slider for frequency penalty
    freq_penalty_slider = gr.Slider(
        minimum=-2.0,
        maximum=2.0,
        value=0.0,
        step=0.1,
        label="Frequency Penalty",
    )

    # Slider for seed
    seed_slider = gr.Slider(
        minimum=-1,
        maximum=65535,  # Arbitrary upper limit for demonstration
        value=-1,
        step=1,
        label="Seed (-1 for random)",
    )

    # Custom Model textbox
    custom_model_box = gr.Textbox(
        value="",
        label="Custom Model",
        info="(Optional) Provide a custom Hugging Face model path. This will override the selected Featured Model if not empty."
    )

    # Accordion for featured models
    with gr.Accordion("Featured Models", open=False):
        # Textbox for filtering the featured models
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1,
        )
        # Radio for selecting the desired model
        featured_models_radio = gr.Radio(
            label="Select a featured model below",
            choices=models_list,  # Start with the entire list
            value=None,           # No default
            interactive=True
        )

        # We connect the model_search_box to the filter function
        model_search_box.change(
            filter_featured_models,
            inputs=model_search_box,
            outputs=featured_models_radio
        )

    # Now we create our ChatInterface
    # We pass all the extra components as additional_inputs
    interface = gr.ChatInterface(
        fn=respond,
        chatbot=chatbot,
        additional_inputs=[
            system_message_box,
            max_tokens_slider,
            temperature_slider,
            top_p_slider,
            freq_penalty_slider,
            seed_slider,
            custom_model_box,
            featured_models_radio
        ],
        theme="Nymbo/Nymbo_Theme",
        title="Serverless TextGen Hub with Featured Models",
        description=(
            "Use the sliders and textboxes to control generation parameters. "
            "Pick a model from 'Featured Models' or specify a custom model path."
        ),
        # Fill the screen height
        fill_height=True
    )

# If you want the script to be directly executable, launch the demo here:
if __name__ == "__main__":
    print("Launching the demo application...")
    demo.launch()