Spaces:
Running
Running
File size: 8,322 Bytes
038f313 4c18bfc 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 10ffb1d 6a2e496 8696822 10ffb1d 8696822 10ffb1d 8696822 10ffb1d 8696822 038f313 e13eb1b 69b4a5f 038f313 3a64d68 98674ca 8696822 10ffb1d 038f313 e13eb1b 52ad57a 10ffb1d e13eb1b 10ffb1d f7c4208 86297f5 52ad57a 98674ca 10ffb1d f7c4208 52ad57a 038f313 e13eb1b 10ffb1d f7c4208 e13eb1b 86297f5 e13eb1b 038f313 10ffb1d 8696822 10ffb1d 8696822 98674ca 10ffb1d 038f313 b56d11c f7c4208 52ad57a e13eb1b 8696822 038f313 10ffb1d 038f313 98674ca 86297f5 038f313 f7c4208 86297f5 10ffb1d b56d11c 9b9dccd b56d11c 542c2ac e13eb1b f7c4208 8696822 10ffb1d 52ad57a 10ffb1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
# We'll define a list of placeholder featured models for demonstration.
# In real usage, replace them with actual model names available on Hugging Face.
models_list = [
"meta-llama/Llama-3.1-8B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct"
]
def filter_featured_models(search_term):
"""
Filters the 'models_list' based on text entered in the search box.
Returns a gr.update object that changes the choices available
in the 'featured_models_radio'.
"""
filtered = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
selected_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: a custom Hugging Face model name (if any)
- selected_model: a model name chosen from the featured models radio button
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Selected featured model: {selected_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Decide which model to use:
# 1) If the user provided a custom model, use it.
# 2) Else if they chose a featured model, use it.
# 3) Otherwise, fall back to a default model.
if custom_model.strip() != "":
model_to_use = custom_model.strip()
elif selected_model is not None and selected_model.strip() != "":
model_to_use = selected_model.strip()
else:
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" # Default fallback
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response
print("Completed response generation.")
########################
# GRADIO APP LAYOUT
########################
# We’ll build a custom Blocks layout so we can have:
# - A Featured Models accordion with a search box
# - Our ChatInterface to handle the conversation
# - Additional sliders and textboxes for settings (like the original code)
########################
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("## Serverless Text Generation Hub")
gr.Markdown(
"An all-in-one UI for chatting with text-generation models on Hugging Face's Inference API."
)
# We keep a Chatbot component for the conversation display
chatbot = gr.Chatbot(height=600, label="Chat Preview")
# Textbox for system message
system_message_box = gr.Textbox(
value="",
label="System Message",
placeholder="Enter a system prompt if you want (optional).",
)
# Slider for max_tokens
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens",
)
# Slider for temperature
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
# Slider for top_p
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
# Slider for frequency penalty
freq_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty",
)
# Slider for seed
seed_slider = gr.Slider(
minimum=-1,
maximum=65535, # Arbitrary upper limit for demonstration
value=-1,
step=1,
label="Seed (-1 for random)",
)
# Custom Model textbox
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. This will override the selected Featured Model if not empty."
)
# Accordion for featured models
with gr.Accordion("Featured Models", open=False):
# Textbox for filtering the featured models
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1,
)
# Radio for selecting the desired model
featured_models_radio = gr.Radio(
label="Select a featured model below",
choices=models_list, # Start with the entire list
value=None, # No default
interactive=True
)
# We connect the model_search_box to the filter function
model_search_box.change(
filter_featured_models,
inputs=model_search_box,
outputs=featured_models_radio
)
# Now we create our ChatInterface
# We pass all the extra components as additional_inputs
interface = gr.ChatInterface(
fn=respond,
chatbot=chatbot,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
freq_penalty_slider,
seed_slider,
custom_model_box,
featured_models_radio
],
theme="Nymbo/Nymbo_Theme",
title="Serverless TextGen Hub with Featured Models",
description=(
"Use the sliders and textboxes to control generation parameters. "
"Pick a model from 'Featured Models' or specify a custom model path."
),
# Fill the screen height
fill_height=True
)
# If you want the script to be directly executable, launch the demo here:
if __name__ == "__main__":
print("Launching the demo application...")
demo.launch() |