Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model | |
): | |
""" | |
This function handles the conversation logic and streams the response. | |
Arguments: | |
- message: The new user message | |
- history: Chat history in the form of a list of (user_message, assistant_message) pairs | |
- system_message: The system prompt specifying how the assistant should behave | |
- max_tokens, temperature, top_p, frequency_penalty, seed, custom_model: Various parameters for text generation | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Selected model (custom_model): {custom_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Create the base system-level message | |
messages = [{"role": "system", "content": system_message}] | |
print("Initial messages array constructed.") | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
print("Latest user message appended.") | |
# If user provided a model, use that; otherwise, fall back to a default model | |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" | |
print(f"Model selected for inference: {model_to_use}") | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Stream tokens from the HF inference endpoint | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
yield response | |
print("Completed response generation.") | |
# ------------------------- | |
# Gradio UI definitions | |
# ------------------------- | |
# Chatbot interface | |
chatbot = gr.Chatbot( | |
height=600, | |
show_copy_button=True, | |
placeholder="Select a model and begin chatting", | |
likeable=True, | |
layout="panel" | |
) | |
print("Chatbot interface created.") | |
# System prompt textbox | |
system_message_box = gr.Textbox( | |
value="", | |
placeholder="You are a helpful assistant.", | |
label="System Prompt" | |
) | |
# Sliders | |
max_tokens_slider = gr.Slider( | |
minimum=1, | |
maximum=4096, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
) | |
temperature_slider = gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
) | |
top_p_slider = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P" | |
) | |
frequency_penalty_slider = gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty" | |
) | |
seed_slider = gr.Slider( | |
minimum=-1, | |
maximum=65535, | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)" | |
) | |
# This textbox is what the respond() function sees as "custom_model" | |
# We will visually place it inside the Model Selection accordion (below), | |
# but we define it here so it can be passed to the ChatInterface. | |
custom_model_box = gr.Textbox( | |
value="", | |
label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", | |
placeholder="meta-llama/Llama-3.3-70B-Instruct" | |
) | |
# Create the ChatInterface, referencing the respond function and including all inputs | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
system_message_box, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
frequency_penalty_slider, | |
seed_slider, | |
custom_model_box, # We pass it here to the ChatInterface function | |
], | |
fill_height=True, | |
chatbot=chatbot, | |
theme="Nymbo/Nymbo_Theme", | |
) | |
print("ChatInterface object created.") | |
# -------------------------- | |
# Additional Model Selection | |
# -------------------------- | |
# This is the function that updates the Custom Model textbox whenever the user picks a model from the Radio | |
def set_custom_model_from_radio(selected): | |
""" | |
Triggered when the user picks a model from the 'Featured Models' radio. | |
We will update the Custom Model text box with that selection automatically. | |
""" | |
print(f"Featured model selected: {selected}") | |
return selected | |
# The set of models displayed in the radio | |
models_list = [ | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"meta-llama/Llama-3.2-3B-Instruct", | |
"meta-llama/Llama-3.2-1B-Instruct", | |
"meta-llama/Llama-3.1-8B-Instruct", | |
"NousResearch/Hermes-3-Llama-3.1-8B", | |
"google/gemma-2-27b-it", | |
"google/gemma-2-9b-it", | |
"google/gemma-2-2b-it", | |
"mistralai/Mistral-Nemo-Instruct-2407", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"Qwen/Qwen2.5-72B-Instruct", | |
"Qwen/QwQ-32B-Preview", | |
"PowerInfer/SmallThinker-3B-Preview", | |
"HuggingFaceTB/SmolLM2-1.7B-Instruct", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
"microsoft/Phi-3.5-mini-instruct", | |
] | |
print("Models list initialized.") | |
# This function handles searching for models by a user-provided filter | |
def filter_models(search_term): | |
print(f"Filtering models with search term: {search_term}") | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
print(f"Filtered models: {filtered}") | |
return gr.update(choices=filtered) | |
# -------------------------------- | |
# Advanced UI arrangement with demo | |
# -------------------------------- | |
with demo: | |
# Create an Accordion for model selection | |
with gr.Accordion("Model Selection", open=False): | |
# Place the Filter Models textbox and the Custom Model textbox side by side | |
with gr.Row(): | |
model_search_box = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1 | |
) | |
# Render the already-defined 'custom_model_box' so it appears in this row | |
custom_model_box.render() | |
# Create the Radio for featured models | |
featured_model_radio = gr.Radio( | |
label="Select a model below", | |
choices=models_list, | |
value="meta-llama/Llama-3.3-70B-Instruct", | |
interactive=True | |
) | |
print("Featured models radio button created.") | |
# Link the search box to the filtering function | |
model_search_box.change( | |
fn=filter_models, | |
inputs=model_search_box, | |
outputs=featured_model_radio | |
) | |
print("Model search box change event linked.") | |
# Link the radio to the function that sets the custom model textbox | |
featured_model_radio.change( | |
fn=set_custom_model_from_radio, | |
inputs=featured_model_radio, | |
outputs=custom_model_box | |
) | |
print("Featured model radio button change event linked.") | |
print("Gradio interface initialized.") | |
# ----------------------- | |
# Launch the application | |
# ----------------------- | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |