Spaces:
Running
Running
File size: 8,292 Bytes
038f313 fab24df c5a20a4 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 c58c098 038f313 27c8b8d 038f313 3a64d68 98674ca c5a20a4 038f313 69de3d2 878aff7 69de3d2 27c8b8d be3f346 f7c4208 901bafe 52ad57a 038f313 69de3d2 c5a20a4 901bafe 27c8b8d a05c183 27c8b8d 30153c5 901bafe 27c8b8d 30153c5 901bafe 27c8b8d 901bafe 27c8b8d 901bafe 27c8b8d 901bafe c5a20a4 901bafe a8fc89d 901bafe 27c8b8d 69de3d2 27c8b8d 30153c5 27c8b8d 901bafe a8fc89d 542c2ac 901bafe f7c4208 69de3d2 901bafe a8fc89d 69de3d2 901bafe 69de3d2 901bafe 69de3d2 901bafe a05c183 878aff7 901bafe a8fc89d 69de3d2 a8fc89d 30153c5 a8fc89d 30153c5 69de3d2 a8fc89d 30153c5 901bafe 6ee17e0 901bafe 69de3d2 a8fc89d 69de3d2 a05c183 69de3d2 a8fc89d 69de3d2 a8fc89d 30153c5 a8fc89d 901bafe a8fc89d 69de3d2 a8fc89d 30153c5 a8fc89d 901bafe a8fc89d 69de3d2 a8fc89d 30153c5 a8fc89d 901bafe a8fc89d be3f346 769901b 69de3d2 77298b9 27c8b8d 391cae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import gradio as gr
from openai import OpenAI
import os
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
"""
This function handles the conversation logic and streams the response.
Arguments:
- message: The new user message
- history: Chat history in the form of a list of (user_message, assistant_message) pairs
- system_message: The system prompt specifying how the assistant should behave
- max_tokens, temperature, top_p, frequency_penalty, seed, custom_model: Various parameters for text generation
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Create the base system-level message
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
print("Latest user message appended.")
# If user provided a model, use that; otherwise, fall back to a default model
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Stream tokens from the HF inference endpoint
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# -------------------------
# Gradio UI definitions
# -------------------------
# Chatbot interface
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting",
likeable=True,
layout="panel"
)
print("Chatbot interface created.")
# System prompt textbox
system_message_box = gr.Textbox(
value="",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
# Sliders
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# This textbox is what the respond() function sees as "custom_model"
# We will visually place it inside the Model Selection accordion (below),
# but we define it here so it can be passed to the ChatInterface.
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# Create the ChatInterface, referencing the respond function and including all inputs
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box, # We pass it here to the ChatInterface function
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
print("ChatInterface object created.")
# --------------------------
# Additional Model Selection
# --------------------------
# This is the function that updates the Custom Model textbox whenever the user picks a model from the Radio
def set_custom_model_from_radio(selected):
"""
Triggered when the user picks a model from the 'Featured Models' radio.
We will update the Custom Model text box with that selection automatically.
"""
print(f"Featured model selected: {selected}")
return selected
# The set of models displayed in the radio
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"google/gemma-2-2b-it",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"PowerInfer/SmallThinker-3B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/Phi-3.5-mini-instruct",
]
print("Models list initialized.")
# This function handles searching for models by a user-provided filter
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
# --------------------------------
# Advanced UI arrangement with demo
# --------------------------------
with demo:
# Create an Accordion for model selection
with gr.Accordion("Model Selection", open=False):
# Place the Filter Models textbox and the Custom Model textbox side by side
with gr.Row():
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
# Render the already-defined 'custom_model_box' so it appears in this row
custom_model_box.render()
# Create the Radio for featured models
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
print("Featured models radio button created.")
# Link the search box to the filtering function
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
print("Model search box change event linked.")
# Link the radio to the function that sets the custom model textbox
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
print("Featured model radio button change event linked.")
print("Gradio interface initialized.")
# -----------------------
# Launch the application
# -----------------------
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |