File size: 8,292 Bytes
038f313
fab24df
c5a20a4
038f313
880ced6
e13eb1b
038f313
 
 
 
 
e13eb1b
038f313
c58c098
038f313
27c8b8d
 
 
038f313
 
 
3a64d68
98674ca
c5a20a4
038f313
69de3d2
 
878aff7
69de3d2
 
 
 
 
 
27c8b8d
 
 
 
 
be3f346
f7c4208
901bafe
52ad57a
 
038f313
69de3d2
c5a20a4
901bafe
 
 
27c8b8d
a05c183
 
27c8b8d
30153c5
901bafe
27c8b8d
30153c5
901bafe
27c8b8d
901bafe
27c8b8d
901bafe
27c8b8d
901bafe
c5a20a4
901bafe
 
 
a8fc89d
901bafe
27c8b8d
69de3d2
27c8b8d
30153c5
 
 
 
 
 
 
 
27c8b8d
 
901bafe
a8fc89d
 
542c2ac
901bafe
 
f7c4208
69de3d2
 
 
 
 
 
 
 
 
 
 
 
901bafe
a8fc89d
69de3d2
 
 
 
 
 
901bafe
69de3d2
901bafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69de3d2
 
 
901bafe
 
 
a05c183
878aff7
901bafe
a8fc89d
69de3d2
a8fc89d
30153c5
a8fc89d
30153c5
 
 
 
 
 
69de3d2
a8fc89d
30153c5
 
 
901bafe
6ee17e0
901bafe
69de3d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fc89d
69de3d2
a05c183
69de3d2
 
 
 
 
 
 
 
 
a8fc89d
69de3d2
a8fc89d
30153c5
 
 
 
a8fc89d
901bafe
a8fc89d
69de3d2
a8fc89d
30153c5
 
 
a8fc89d
901bafe
a8fc89d
69de3d2
a8fc89d
30153c5
 
 
a8fc89d
901bafe
a8fc89d
be3f346
769901b
69de3d2
 
 
 
77298b9
27c8b8d
391cae3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import gradio as gr
from openai import OpenAI
import os

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model
):
    """
    This function handles the conversation logic and streams the response.

    Arguments:
    - message: The new user message
    - history: Chat history in the form of a list of (user_message, assistant_message) pairs
    - system_message: The system prompt specifying how the assistant should behave
    - max_tokens, temperature, top_p, frequency_penalty, seed, custom_model: Various parameters for text generation
    """
    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model (custom_model): {custom_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Create the base system-level message
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})
    print("Latest user message appended.")

    # If user provided a model, use that; otherwise, fall back to a default model
    model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Stream tokens from the HF inference endpoint
    for message_chunk in client.chat.completions.create(
        model=model_to_use,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")


# -------------------------
# Gradio UI definitions
# -------------------------

# Chatbot interface
chatbot = gr.Chatbot(
    height=600, 
    show_copy_button=True, 
    placeholder="Select a model and begin chatting", 
    likeable=True, 
    layout="panel"
)
print("Chatbot interface created.")

# System prompt textbox
system_message_box = gr.Textbox(
    value="", 
    placeholder="You are a helpful assistant.", 
    label="System Prompt"
)

# Sliders
max_tokens_slider = gr.Slider(
    minimum=1,
    maximum=4096,
    value=512,
    step=1,
    label="Max new tokens"
)
temperature_slider = gr.Slider(
    minimum=0.1,
    maximum=4.0,
    value=0.7,
    step=0.1,
    label="Temperature"
)
top_p_slider = gr.Slider(
    minimum=0.1,
    maximum=1.0,
    value=0.95,
    step=0.05,
    label="Top-P"
)
frequency_penalty_slider = gr.Slider(
    minimum=-2.0,
    maximum=2.0,
    value=0.0,
    step=0.1,
    label="Frequency Penalty"
)
seed_slider = gr.Slider(
    minimum=-1,
    maximum=65535,
    value=-1,
    step=1,
    label="Seed (-1 for random)"
)

# This textbox is what the respond() function sees as "custom_model"
# We will visually place it inside the Model Selection accordion (below),
# but we define it here so it can be passed to the ChatInterface.
custom_model_box = gr.Textbox(
    value="",
    label="Custom Model",
    info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
    placeholder="meta-llama/Llama-3.3-70B-Instruct"
)

# Create the ChatInterface, referencing the respond function and including all inputs
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        system_message_box,
        max_tokens_slider,
        temperature_slider,
        top_p_slider,
        frequency_penalty_slider,
        seed_slider,
        custom_model_box,  # We pass it here to the ChatInterface function
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("ChatInterface object created.")


# --------------------------
# Additional Model Selection
# --------------------------

# This is the function that updates the Custom Model textbox whenever the user picks a model from the Radio
def set_custom_model_from_radio(selected):
    """
    Triggered when the user picks a model from the 'Featured Models' radio.
    We will update the Custom Model text box with that selection automatically.
    """
    print(f"Featured model selected: {selected}")
    return selected

# The set of models displayed in the radio
models_list = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.2-1B-Instruct",
    "meta-llama/Llama-3.1-8B-Instruct",
    "NousResearch/Hermes-3-Llama-3.1-8B",
    "google/gemma-2-27b-it",
    "google/gemma-2-9b-it",
    "google/gemma-2-2b-it",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "Qwen/Qwen2.5-72B-Instruct",
    "Qwen/QwQ-32B-Preview",
    "PowerInfer/SmallThinker-3B-Preview",
    "HuggingFaceTB/SmolLM2-1.7B-Instruct",
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    "microsoft/Phi-3.5-mini-instruct",
]
print("Models list initialized.")

# This function handles searching for models by a user-provided filter
def filter_models(search_term):
    print(f"Filtering models with search term: {search_term}")
    filtered = [m for m in models_list if search_term.lower() in m.lower()]
    print(f"Filtered models: {filtered}")
    return gr.update(choices=filtered)


# --------------------------------
# Advanced UI arrangement with demo
# --------------------------------
with demo:
    # Create an Accordion for model selection
    with gr.Accordion("Model Selection", open=False):
        # Place the Filter Models textbox and the Custom Model textbox side by side
        with gr.Row():
            model_search_box = gr.Textbox(
                label="Filter Models",
                placeholder="Search for a featured model...",
                lines=1
            )
            # Render the already-defined 'custom_model_box' so it appears in this row
            custom_model_box.render()

        # Create the Radio for featured models
        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.3-70B-Instruct",
            interactive=True
        )
        print("Featured models radio button created.")

        # Link the search box to the filtering function
        model_search_box.change(
            fn=filter_models,
            inputs=model_search_box,
            outputs=featured_model_radio
        )
        print("Model search box change event linked.")

        # Link the radio to the function that sets the custom model textbox
        featured_model_radio.change(
            fn=set_custom_model_from_radio,
            inputs=featured_model_radio,
            outputs=custom_model_box
        )
        print("Featured model radio button change event linked.")

print("Gradio interface initialized.")


# -----------------------
# Launch the application
# -----------------------
if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()