Nymbo's picture
Update app.py
69b4a5f verified
raw
history blame
7.36 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
model,
custom_model,
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed
):
"""
This function handles the chatbot response.
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"Model: {model}")
print(f"Custom model: {custom_model}")
print(f"System message: {system_message}")
print(f"Parameters - Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
# Convert seed to None if -1
if seed == -1:
seed = None
# Set the model based on selection or custom input
selected_model = custom_model.strip() if custom_model.strip() != "" else model
# Construct messages array
messages = [{"role": "system", "content": system_message}]
# Add conversation history
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
# Append latest message
messages.append({"role": "user", "content": message})
# Start with empty response
response = ""
print("Sending request to API.")
# Make the streaming request
for message_chunk in client.chat.completions.create(
model=selected_model,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create Chatbot component
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Define available models
models_list = [
"meta-llama/Llama-2-70b-chat-hf",
"meta-llama/Llama-2-13b-chat-hf",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2",
"HuggingFaceH4/zephyr-7b-beta",
]
# Create the Gradio interface with tabs
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
with gr.Tab("Chat"):
with gr.Row():
with gr.Column():
# Model selection accordion
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a model...",
lines=1
)
model = gr.Radio(
label="Select a model",
choices=models_list,
value="meta-llama/Llama-2-70b-chat-hf"
)
# Custom model input
custom_model = gr.Textbox(
label="Custom Model",
info="Enter Hugging Face model path (optional)",
placeholder="organization/model-name"
)
# System message and parameters
system_message = gr.Textbox(label="System message")
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
with gr.Tab("Information"):
with gr.Accordion("Featured Models", open=False):
gr.HTML("""
<p><a href="https://huggingface.co/models?pipeline_tag=text-generation&sort=trending">See all available models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Parameters</th>
<th>Notes</th>
</tr>
<tr>
<td>Llama-2-70b-chat</td>
<td>70B</td>
<td>Meta's largest chat model</td>
</tr>
<tr>
<td>Mixtral-8x7B</td>
<td>47B</td>
<td>Mixture of Experts architecture</td>
</tr>
<tr>
<td>Mistral-7B</td>
<td>7B</td>
<td>Efficient base model</td>
</tr>
</table>
""")
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown("""
## System Message
The system message sets the context and behavior for the AI assistant. It's like giving it a role or specific instructions.
## Max New Tokens
Controls the maximum length of the generated response. Higher values allow for longer responses but take more time.
## Temperature
Controls randomness in the response:
- Lower (0.1-0.5): More focused and deterministic
- Higher (0.7-1.0): More creative and varied
## Top-P
Nucleus sampling parameter:
- Lower values: More focused on likely tokens
- Higher values: More diverse vocabulary usage
## Frequency Penalty
Discourages repetition:
- Negative: May allow more repetition
- Positive: Encourages more diverse word choice
## Seed
Controls randomness initialization:
- -1: Random seed each time
- Fixed value: Reproducible outputs
""")
# Function to filter models based on search
def filter_models(search_term):
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Connect the search box to the model filter function
model_search.change(filter_models, inputs=model_search, outputs=model)
# Create the chat interface
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
model,
custom_model,
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
],
chatbot=chatbot,
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=False, share=False)