Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
custom_model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed | |
): | |
""" | |
This function handles the chatbot response. | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"Model: {model}") | |
print(f"Custom model: {custom_model}") | |
print(f"System message: {system_message}") | |
print(f"Parameters - Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
# Convert seed to None if -1 | |
if seed == -1: | |
seed = None | |
# Set the model based on selection or custom input | |
selected_model = custom_model.strip() if custom_model.strip() != "" else model | |
# Construct messages array | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
# Append latest message | |
messages.append({"role": "user", "content": message}) | |
# Start with empty response | |
response = "" | |
print("Sending request to API.") | |
# Make the streaming request | |
for message_chunk in client.chat.completions.create( | |
model=selected_model, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
yield response | |
print("Completed response generation.") | |
# Create Chatbot component | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# Define available models | |
models_list = [ | |
"meta-llama/Llama-2-70b-chat-hf", | |
"meta-llama/Llama-2-13b-chat-hf", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.2", | |
"HuggingFaceH4/zephyr-7b-beta", | |
] | |
# Create the Gradio interface with tabs | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
with gr.Tab("Chat"): | |
with gr.Row(): | |
with gr.Column(): | |
# Model selection accordion | |
with gr.Accordion("Featured Models", open=True): | |
model_search = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a model...", | |
lines=1 | |
) | |
model = gr.Radio( | |
label="Select a model", | |
choices=models_list, | |
value="meta-llama/Llama-2-70b-chat-hf" | |
) | |
# Custom model input | |
custom_model = gr.Textbox( | |
label="Custom Model", | |
info="Enter Hugging Face model path (optional)", | |
placeholder="organization/model-name" | |
) | |
# System message and parameters | |
system_message = gr.Textbox(label="System message") | |
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") | |
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") | |
with gr.Tab("Information"): | |
with gr.Accordion("Featured Models", open=False): | |
gr.HTML(""" | |
<p><a href="https://huggingface.co/models?pipeline_tag=text-generation&sort=trending">See all available models</a></p> | |
<table style="width:100%; text-align:center; margin:auto;"> | |
<tr> | |
<th>Model Name</th> | |
<th>Parameters</th> | |
<th>Notes</th> | |
</tr> | |
<tr> | |
<td>Llama-2-70b-chat</td> | |
<td>70B</td> | |
<td>Meta's largest chat model</td> | |
</tr> | |
<tr> | |
<td>Mixtral-8x7B</td> | |
<td>47B</td> | |
<td>Mixture of Experts architecture</td> | |
</tr> | |
<tr> | |
<td>Mistral-7B</td> | |
<td>7B</td> | |
<td>Efficient base model</td> | |
</tr> | |
</table> | |
""") | |
with gr.Accordion("Parameters Overview", open=False): | |
gr.Markdown(""" | |
## System Message | |
The system message sets the context and behavior for the AI assistant. It's like giving it a role or specific instructions. | |
## Max New Tokens | |
Controls the maximum length of the generated response. Higher values allow for longer responses but take more time. | |
## Temperature | |
Controls randomness in the response: | |
- Lower (0.1-0.5): More focused and deterministic | |
- Higher (0.7-1.0): More creative and varied | |
## Top-P | |
Nucleus sampling parameter: | |
- Lower values: More focused on likely tokens | |
- Higher values: More diverse vocabulary usage | |
## Frequency Penalty | |
Discourages repetition: | |
- Negative: May allow more repetition | |
- Positive: Encourages more diverse word choice | |
## Seed | |
Controls randomness initialization: | |
- -1: Random seed each time | |
- Fixed value: Reproducible outputs | |
""") | |
# Function to filter models based on search | |
def filter_models(search_term): | |
filtered_models = [m for m in models_list if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered_models) | |
# Connect the search box to the model filter function | |
model_search.change(filter_models, inputs=model_search, outputs=model) | |
# Create the chat interface | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
model, | |
custom_model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
], | |
chatbot=chatbot, | |
) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch(show_api=False, share=False) |