Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
import requests # Added for potential future use, though OpenAI client handles it now | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
if not ACCESS_TOKEN: | |
print("Warning: HF_TOKEN environment variable not set. Authentication might fail.") | |
else: | |
print("Access token loaded.") | |
# Base URLs for different providers | |
HF_INFERENCE_BASE_URL = "https://api-inference.huggingface.co/v1/" | |
CEREBRAS_ROUTER_BASE_URL = "https://router.huggingface.co/cerebras/v1/" # Use base URL for OpenAI client | |
# Default provider | |
DEFAULT_PROVIDER = "hf-inference" | |
# --- Main Respond Function --- | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
inference_provider # New argument for provider selection | |
): | |
print(f"--- New Request ---") | |
print(f"Selected Inference Provider: {inference_provider}") | |
print(f"Received message: {message}") | |
# print(f"History: {history}") # Can be verbose | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Selected model (custom_model): {custom_model}") | |
# Determine the base URL based on the selected provider | |
if inference_provider == "cerebras": | |
base_url = CEREBRAS_ROUTER_BASE_URL | |
print(f"Using Cerebras Router endpoint: {base_url}") | |
else: # Default to hf-inference | |
base_url = HF_INFERENCE_BASE_URL | |
print(f"Using HF Inference API endpoint: {base_url}") | |
# Initialize the OpenAI client dynamically for each request | |
try: | |
client = OpenAI( | |
base_url=base_url, | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized for the request.") | |
except Exception as e: | |
print(f"Error initializing OpenAI client: {e}") | |
yield f"Error: Could not initialize API client for provider {inference_provider}. Check token and endpoint." | |
return | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
messages = [{"role": "system", "content": system_message}] | |
# print("Initial messages array constructed.") # Less verbose logging | |
# Add conversation history to the context | |
for val in history: | |
user_part, assistant_part = val[0], val[1] | |
if user_part: messages.append({"role": "user", "content": user_part}) | |
if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# print("Full message context prepared.") # Less verbose logging | |
# If user provided a model, use that; otherwise, fall back to a default model | |
# Ensure a default model is always set if custom_model is empty | |
model_to_use = custom_model.strip() if custom_model.strip() else "meta-llama/Llama-3.3-70B-Instruct" | |
print(f"Model selected for inference: {model_to_use}") | |
# Start streaming response | |
response = "" | |
print(f"Sending request to {inference_provider} via {base_url}...") | |
try: | |
stream = client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
) | |
for message_chunk in stream: | |
token_text = message_chunk.choices[0].delta.content | |
# Handle potential None or empty tokens gracefully | |
if token_text: | |
# print(f"Received token: {token_text}") # Very verbose | |
response += token_text | |
yield response | |
# Handle potential finish reason if needed (e.g., length) | |
# finish_reason = message_chunk.choices[0].finish_reason | |
# if finish_reason: | |
# print(f"Stream finished with reason: {finish_reason}") | |
except Exception as e: | |
print(f"Error during API call to {inference_provider}: {e}") | |
yield f"Error: API call failed. Details: {str(e)}" | |
return # Stop generation on error | |
print("Completed response generation.") | |
# --- GRADIO UI Elements --- | |
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and provider, then begin chatting", layout="panel") | |
print("Chatbot interface created.") | |
# Moved these inside the Accordion later | |
system_message_box = gr.Textbox(value="You are a helpful assistant.", label="System Prompt") | |
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens") # Increased default | |
temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") # Adjusted range | |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") | |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") | |
custom_model_box = gr.Textbox( | |
value="", | |
label="Custom Model Path", | |
info="(Optional) Provide a Hugging Face model path. Overrides featured model selection.", | |
placeholder="meta-llama/Llama-3.3-70B-Instruct" | |
) | |
# New UI Element for Provider Selection (will be placed in Accordion) | |
inference_provider_radio = gr.Radio( | |
choices=["hf-inference", "cerebras"], | |
value=DEFAULT_PROVIDER, | |
label="Inference Provider", | |
info=f"Select the backend API. Default: {DEFAULT_PROVIDER}" | |
) | |
print("Inference provider radio button created.") | |
# --- Gradio Chat Interface Definition --- | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
# Order matters: must match the 'respond' function signature | |
system_message_box, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
frequency_penalty_slider, | |
seed_slider, | |
custom_model_box, | |
inference_provider_radio, # Added the new input | |
], | |
fill_height=True, | |
chatbot=chatbot, | |
theme="Nymbo/Nymbo_Theme", | |
title="Multi-Provider Chat Hub", | |
description="Chat with various models using different inference backends (HF Inference API or Cerebras via HF Router)." | |
) | |
print("ChatInterface object created.") | |
# --- Add Accordions for Settings within the Demo context --- | |
with demo: | |
# Model Selection Accordion (existing logic) | |
with gr.Accordion("Model Selection", open=False): | |
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1) | |
print("Model search box created.") | |
# Example models list (keep your extensive list) | |
models_list = [ | |
"meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct", | |
"NousResearch/Hermes-3-Llama-3.1-8B", "mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.3", "Qwen/Qwen3-32B", "microsoft/Phi-3.5-mini-instruct", | |
# Add the rest of your models here... | |
] | |
print("Models list initialized.") | |
featured_model_radio = gr.Radio( | |
label="Select a Featured Model", | |
choices=models_list, | |
value="meta-llama/Llama-3.3-70B-Instruct", # Default featured model | |
interactive=True | |
) | |
print("Featured models radio button created.") | |
def filter_models(search_term): | |
print(f"Filtering models with search term: {search_term}") | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
# Ensure a valid value is selected if the current one is filtered out | |
current_value = featured_model_radio.value | |
if current_value not in filtered and filtered: | |
new_value = filtered[0] # Select the first available filtered model | |
elif not filtered: | |
new_value = None # Or handle empty case as needed | |
else: | |
new_value = current_value # Keep current if still valid | |
print(f"Filtered models: {filtered}") | |
return gr.update(choices=filtered, value=new_value) | |
def set_custom_model_from_radio(selected_model): | |
"""Updates the Custom Model text box when a featured model is selected.""" | |
print(f"Featured model selected: {selected_model}") | |
return selected_model # Directly return the selected model name | |
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio) | |
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box) | |
print("Model selection events linked.") | |
# Advanced Settings Accordion (New) | |
with gr.Accordion("Advanced Settings", open=False): | |
# Place the provider selection and parameter sliders here | |
gr.Markdown("Configure inference parameters and select the backend provider.") | |
# Add the UI elements defined earlier into this accordion | |
gr.Textbox(value="You are a helpful assistant.", label="System Prompt").render() # Render system_message_box here | |
inference_provider_radio.render() # Render the provider radio here | |
max_tokens_slider.render() | |
temperature_slider.render() | |
top_p_slider.render() | |
frequency_penalty_slider.render() | |
seed_slider.render() | |
print("Advanced settings accordion created with provider selection and parameters.") | |
print("Gradio interface fully initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch(show_api=False) |