Nymbo's picture
Update app.py
5b8ad4f verified
raw
history blame
9.94 kB
import gradio as gr
from openai import OpenAI
import os
import requests # Added for potential future use, though OpenAI client handles it now
ACCESS_TOKEN = os.getenv("HF_TOKEN")
if not ACCESS_TOKEN:
print("Warning: HF_TOKEN environment variable not set. Authentication might fail.")
else:
print("Access token loaded.")
# Base URLs for different providers
HF_INFERENCE_BASE_URL = "https://api-inference.huggingface.co/v1/"
CEREBRAS_ROUTER_BASE_URL = "https://router.huggingface.co/cerebras/v1/" # Use base URL for OpenAI client
# Default provider
DEFAULT_PROVIDER = "hf-inference"
# --- Main Respond Function ---
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
inference_provider # New argument for provider selection
):
print(f"--- New Request ---")
print(f"Selected Inference Provider: {inference_provider}")
print(f"Received message: {message}")
# print(f"History: {history}") # Can be verbose
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
# Determine the base URL based on the selected provider
if inference_provider == "cerebras":
base_url = CEREBRAS_ROUTER_BASE_URL
print(f"Using Cerebras Router endpoint: {base_url}")
else: # Default to hf-inference
base_url = HF_INFERENCE_BASE_URL
print(f"Using HF Inference API endpoint: {base_url}")
# Initialize the OpenAI client dynamically for each request
try:
client = OpenAI(
base_url=base_url,
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized for the request.")
except Exception as e:
print(f"Error initializing OpenAI client: {e}")
yield f"Error: Could not initialize API client for provider {inference_provider}. Check token and endpoint."
return
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
messages = [{"role": "system", "content": system_message}]
# print("Initial messages array constructed.") # Less verbose logging
# Add conversation history to the context
for val in history:
user_part, assistant_part = val[0], val[1]
if user_part: messages.append({"role": "user", "content": user_part})
if assistant_part: messages.append({"role": "assistant", "content": assistant_part})
# Append the latest user message
messages.append({"role": "user", "content": message})
# print("Full message context prepared.") # Less verbose logging
# If user provided a model, use that; otherwise, fall back to a default model
# Ensure a default model is always set if custom_model is empty
model_to_use = custom_model.strip() if custom_model.strip() else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start streaming response
response = ""
print(f"Sending request to {inference_provider} via {base_url}...")
try:
stream = client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
)
for message_chunk in stream:
token_text = message_chunk.choices[0].delta.content
# Handle potential None or empty tokens gracefully
if token_text:
# print(f"Received token: {token_text}") # Very verbose
response += token_text
yield response
# Handle potential finish reason if needed (e.g., length)
# finish_reason = message_chunk.choices[0].finish_reason
# if finish_reason:
# print(f"Stream finished with reason: {finish_reason}")
except Exception as e:
print(f"Error during API call to {inference_provider}: {e}")
yield f"Error: API call failed. Details: {str(e)}"
return # Stop generation on error
print("Completed response generation.")
# --- GRADIO UI Elements ---
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and provider, then begin chatting", layout="panel")
print("Chatbot interface created.")
# Moved these inside the Accordion later
system_message_box = gr.Textbox(value="You are a helpful assistant.", label="System Prompt")
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens") # Increased default
temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") # Adjusted range
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
custom_model_box = gr.Textbox(
value="",
label="Custom Model Path",
info="(Optional) Provide a Hugging Face model path. Overrides featured model selection.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# New UI Element for Provider Selection (will be placed in Accordion)
inference_provider_radio = gr.Radio(
choices=["hf-inference", "cerebras"],
value=DEFAULT_PROVIDER,
label="Inference Provider",
info=f"Select the backend API. Default: {DEFAULT_PROVIDER}"
)
print("Inference provider radio button created.")
# --- Gradio Chat Interface Definition ---
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
# Order matters: must match the 'respond' function signature
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box,
inference_provider_radio, # Added the new input
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
title="Multi-Provider Chat Hub",
description="Chat with various models using different inference backends (HF Inference API or Cerebras via HF Router)."
)
print("ChatInterface object created.")
# --- Add Accordions for Settings within the Demo context ---
with demo:
# Model Selection Accordion (existing logic)
with gr.Accordion("Model Selection", open=False):
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1)
print("Model search box created.")
# Example models list (keep your extensive list)
models_list = [
"meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B", "mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3", "Qwen/Qwen3-32B", "microsoft/Phi-3.5-mini-instruct",
# Add the rest of your models here...
]
print("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a Featured Model",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct", # Default featured model
interactive=True
)
print("Featured models radio button created.")
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
# Ensure a valid value is selected if the current one is filtered out
current_value = featured_model_radio.value
if current_value not in filtered and filtered:
new_value = filtered[0] # Select the first available filtered model
elif not filtered:
new_value = None # Or handle empty case as needed
else:
new_value = current_value # Keep current if still valid
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered, value=new_value)
def set_custom_model_from_radio(selected_model):
"""Updates the Custom Model text box when a featured model is selected."""
print(f"Featured model selected: {selected_model}")
return selected_model # Directly return the selected model name
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
print("Model selection events linked.")
# Advanced Settings Accordion (New)
with gr.Accordion("Advanced Settings", open=False):
# Place the provider selection and parameter sliders here
gr.Markdown("Configure inference parameters and select the backend provider.")
# Add the UI elements defined earlier into this accordion
gr.Textbox(value="You are a helpful assistant.", label="System Prompt").render() # Render system_message_box here
inference_provider_radio.render() # Render the provider radio here
max_tokens_slider.render()
temperature_slider.render()
top_p_slider.render()
frequency_penalty_slider.render()
seed_slider.render()
print("Advanced settings accordion created with provider selection and parameters.")
print("Gradio interface fully initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=False)