Spaces:
Running
Running
File size: 9,936 Bytes
038f313 fab24df c5a20a4 5b8ad4f 038f313 db00df1 5b8ad4f c6bdd15 5b8ad4f 038f313 5b8ad4f 038f313 27c8b8d 038f313 3a64d68 98674ca 5b8ad4f 038f313 0ef95ea 5b8ad4f 0ef95ea 5b8ad4f 0ef95ea 5b8ad4f f7c4208 901bafe 0ef95ea 038f313 c5a20a4 5b8ad4f 901bafe 5b8ad4f 27c8b8d 5b8ad4f 27c8b8d 5b8ad4f 4df41b9 5b8ad4f 0ef95ea 5b8ad4f 0ef95ea 5b8ad4f 0ef95ea 901bafe 5b8ad4f f7c4208 5b8ad4f 0ef95ea a8fc89d 5b8ad4f 4df41b9 901bafe 5b8ad4f 4df41b9 5b8ad4f 901bafe 5b8ad4f a8fc89d b0cbd1c 5b8ad4f a8fc89d 5b8ad4f 30153c5 817474e 5b8ad4f a8fc89d 5b8ad4f 901bafe 0ef95ea 901bafe 5b8ad4f 0ef95ea b0cbd1c 5b8ad4f 4df41b9 b0cbd1c 0ef95ea b0cbd1c 5b8ad4f 0ef95ea 5b8ad4f a8fc89d 5b8ad4f 769901b 77298b9 5b8ad4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
from openai import OpenAI
import os
import requests # Added for potential future use, though OpenAI client handles it now
ACCESS_TOKEN = os.getenv("HF_TOKEN")
if not ACCESS_TOKEN:
print("Warning: HF_TOKEN environment variable not set. Authentication might fail.")
else:
print("Access token loaded.")
# Base URLs for different providers
HF_INFERENCE_BASE_URL = "https://api-inference.huggingface.co/v1/"
CEREBRAS_ROUTER_BASE_URL = "https://router.huggingface.co/cerebras/v1/" # Use base URL for OpenAI client
# Default provider
DEFAULT_PROVIDER = "hf-inference"
# --- Main Respond Function ---
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
inference_provider # New argument for provider selection
):
print(f"--- New Request ---")
print(f"Selected Inference Provider: {inference_provider}")
print(f"Received message: {message}")
# print(f"History: {history}") # Can be verbose
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
# Determine the base URL based on the selected provider
if inference_provider == "cerebras":
base_url = CEREBRAS_ROUTER_BASE_URL
print(f"Using Cerebras Router endpoint: {base_url}")
else: # Default to hf-inference
base_url = HF_INFERENCE_BASE_URL
print(f"Using HF Inference API endpoint: {base_url}")
# Initialize the OpenAI client dynamically for each request
try:
client = OpenAI(
base_url=base_url,
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized for the request.")
except Exception as e:
print(f"Error initializing OpenAI client: {e}")
yield f"Error: Could not initialize API client for provider {inference_provider}. Check token and endpoint."
return
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
messages = [{"role": "system", "content": system_message}]
# print("Initial messages array constructed.") # Less verbose logging
# Add conversation history to the context
for val in history:
user_part, assistant_part = val[0], val[1]
if user_part: messages.append({"role": "user", "content": user_part})
if assistant_part: messages.append({"role": "assistant", "content": assistant_part})
# Append the latest user message
messages.append({"role": "user", "content": message})
# print("Full message context prepared.") # Less verbose logging
# If user provided a model, use that; otherwise, fall back to a default model
# Ensure a default model is always set if custom_model is empty
model_to_use = custom_model.strip() if custom_model.strip() else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start streaming response
response = ""
print(f"Sending request to {inference_provider} via {base_url}...")
try:
stream = client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
)
for message_chunk in stream:
token_text = message_chunk.choices[0].delta.content
# Handle potential None or empty tokens gracefully
if token_text:
# print(f"Received token: {token_text}") # Very verbose
response += token_text
yield response
# Handle potential finish reason if needed (e.g., length)
# finish_reason = message_chunk.choices[0].finish_reason
# if finish_reason:
# print(f"Stream finished with reason: {finish_reason}")
except Exception as e:
print(f"Error during API call to {inference_provider}: {e}")
yield f"Error: API call failed. Details: {str(e)}"
return # Stop generation on error
print("Completed response generation.")
# --- GRADIO UI Elements ---
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and provider, then begin chatting", layout="panel")
print("Chatbot interface created.")
# Moved these inside the Accordion later
system_message_box = gr.Textbox(value="You are a helpful assistant.", label="System Prompt")
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens") # Increased default
temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") # Adjusted range
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
custom_model_box = gr.Textbox(
value="",
label="Custom Model Path",
info="(Optional) Provide a Hugging Face model path. Overrides featured model selection.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# New UI Element for Provider Selection (will be placed in Accordion)
inference_provider_radio = gr.Radio(
choices=["hf-inference", "cerebras"],
value=DEFAULT_PROVIDER,
label="Inference Provider",
info=f"Select the backend API. Default: {DEFAULT_PROVIDER}"
)
print("Inference provider radio button created.")
# --- Gradio Chat Interface Definition ---
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
# Order matters: must match the 'respond' function signature
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box,
inference_provider_radio, # Added the new input
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
title="Multi-Provider Chat Hub",
description="Chat with various models using different inference backends (HF Inference API or Cerebras via HF Router)."
)
print("ChatInterface object created.")
# --- Add Accordions for Settings within the Demo context ---
with demo:
# Model Selection Accordion (existing logic)
with gr.Accordion("Model Selection", open=False):
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1)
print("Model search box created.")
# Example models list (keep your extensive list)
models_list = [
"meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B", "mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3", "Qwen/Qwen3-32B", "microsoft/Phi-3.5-mini-instruct",
# Add the rest of your models here...
]
print("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a Featured Model",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct", # Default featured model
interactive=True
)
print("Featured models radio button created.")
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
# Ensure a valid value is selected if the current one is filtered out
current_value = featured_model_radio.value
if current_value not in filtered and filtered:
new_value = filtered[0] # Select the first available filtered model
elif not filtered:
new_value = None # Or handle empty case as needed
else:
new_value = current_value # Keep current if still valid
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered, value=new_value)
def set_custom_model_from_radio(selected_model):
"""Updates the Custom Model text box when a featured model is selected."""
print(f"Featured model selected: {selected_model}")
return selected_model # Directly return the selected model name
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
print("Model selection events linked.")
# Advanced Settings Accordion (New)
with gr.Accordion("Advanced Settings", open=False):
# Place the provider selection and parameter sliders here
gr.Markdown("Configure inference parameters and select the backend provider.")
# Add the UI elements defined earlier into this accordion
gr.Textbox(value="You are a helpful assistant.", label="System Prompt").render() # Render system_message_box here
inference_provider_radio.render() # Render the provider radio here
max_tokens_slider.render()
temperature_slider.render()
top_p_slider.render()
frequency_penalty_slider.render()
seed_slider.render()
print("Advanced settings accordion created with provider selection and parameters.")
print("Gradio interface fully initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=False) |