Nymbo's picture
Update app.py
57cb471 verified
raw
history blame
16.9 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
from smolagents.mcp_client import MCPClient
# Global variables for MCP Client and TTS tool
mcp_client = None
tts_tool = None
# Access token from environment
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
if isinstance(image_path, Image.Image):
image = image_path
else:
image = Image.open(image_path)
if image.mode == 'RGBA':
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
# Initialize MCP Client at startup
def init_mcp_client():
global mcp_client, tts_tool
try:
mcp_client = MCPClient({"url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"})
tools = mcp_client.get_tools()
tts_tool = next((tool for tool in tools if tool.name == "text_to_audio"), None)
if tts_tool:
print("Successfully connected to Kokoro TTS tool")
else:
print("TTS tool not found")
except Exception as e:
print(f"Error initializing MCP Client: {e}")
def respond(
message,
image_files,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model
):
print(f"Received message: {message}")
print(f"Received {len(image_files) if image_files else 0} images")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
if seed == -1:
seed = None
if image_files and len(image_files) > 0:
user_content = []
if message and message.strip():
user_content.append({"type": "text", "text": message})
for img in image_files:
if img is not None:
try:
encoded_image = encode_image(img)
if encoded_image:
user_content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
})
except Exception as e:
print(f"Error encoding image: {e}")
else:
user_content = message
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
if isinstance(user_part, tuple) and len(user_part) == 2:
history_content = []
if user_part[0]:
history_content.append({"type": "text", "text": user_part[0]})
for img in user_part[1]:
if img:
try:
encoded_img = encode_image(img)
if encoded_img:
history_content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
})
except Exception as e:
print(f"Error encoding history image: {e}")
messages.append({"role": "user", "content": history_content})
else:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context (type: {type(user_part)})")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
messages.append({"role": "user", "content": user_content})
print(f"Latest user message appended (content type: {type(user_content)})")
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
response = ""
print(f"Sending request to {provider} provider.")
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
try:
stream = client.chat_completion(
model=model_to_use,
messages=messages,
stream=True,
**parameters
)
print("Received tokens: ", end="", flush=True)
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
print(token_text, end="", flush=True)
response += token_text
yield response
print()
except Exception as e:
print(f"Error during inference: {e}")
response += f"\nError: {str(e)}"
yield response
print("Completed response generation.")
# Function to generate audio from the last bot response
def generate_audio(history):
if not history or len(history) == 0:
print("No history available for audio generation")
return None
last_message = history[-1][1] # Bot's response
if not last_message or not isinstance(last_message, str):
print("Last message is empty or not a string")
return None
if tts_tool:
try:
# Call the TTS tool directly, expecting (sample_rate, audio_array)
result = tts_tool(text=last_message, speed=1.0)
if result and len(result) == 2:
sample_rate, audio_data = result
print("Audio generated successfully")
return (sample_rate, audio_data)
else:
print("TTS tool returned invalid result")
return None
except Exception as e:
print(f"Error generating audio: {e}")
return None
else:
print("TTS tool not available")
return None
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# Gradio UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
layout="panel"
)
print("Chatbot interface created.")
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=False,
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"]
)
# Audio generation components
with gr.Row():
generate_audio_btn = gr.Button("Generate Audio from Last Response")
audio_output = gr.Audio(label="Generated Audio", type="numpy")
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
with gr.Column():
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = [
"hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"
]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here.", placeholder="Enter your Hugging Face API token", type="password")
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path.", placeholder="meta-llama/Llama-3.3-70B-Instruct")
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct"
]
featured_model_radio = gr.Radio(label="Select a model below", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
chat_history = gr.State([])
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
def set_custom_model_from_radio(selected):
print(f"Featured model selected: {selected}")
return selected
def user(user_message, history):
print(f"User message received: {user_message}")
if not user_message or (not user_message.get("text") and not user_message.get("files")):
print("Empty message, skipping")
return history
text_content = user_message.get("text", "").strip()
files = user_message.get("files", [])
print(f"Text content: {text_content}")
print(f"Files: {files}")
if not text_content and not files:
print("No content to display")
return history
if files and len(files) > 0:
if text_content:
print(f"Adding text message: {text_content}")
history.append([text_content, None])
for file_path in files:
if file_path and isinstance(file_path, str):
print(f"Adding image: {file_path}")
history.append([f"![Image]({file_path})", None])
return history
else:
print(f"Adding text-only message: {text_content}")
history.append([text_content, None])
return history
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
if not history or len(history) == 0:
print("No history to process")
return history
user_message = history[-1][0]
print(f"Processing user message: {user_message}")
is_image = False
image_path = None
text_content = user_message
if isinstance(user_message, str) and user_message.startswith("![Image]("):
is_image = True
image_path = user_message.replace("![Image](", "").replace(")", "")
print(f"Image detected: {image_path}")
text_content = ""
text_context = ""
if is_image and len(history) > 1:
prev_message = history[-2][0]
if isinstance(prev_message, str) and not prev_message.startswith("![Image]("):
text_context = prev_message
print(f"Using text context from previous message: {text_context}")
history[-1][1] = ""
if is_image:
for response in respond(
text_context, [image_path], history[:-1], system_msg, max_tokens, temperature, top_p,
freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model
):
history[-1][1] = response
yield history
else:
for response in respond(
text_content, None, history[:-1], system_msg, max_tokens, temperature, top_p,
freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model
):
history[-1][1] = response
yield history
msg.submit(user, [msg, chatbot], [chatbot], queue=False).then(
bot, [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
model_search_box, featured_model_radio], [chatbot]
).then(lambda: {"text": "", "files": []}, None, [msg])
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
print("Model search box change event linked.")
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
print("Featured model radio button change event linked.")
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("BYOK textbox change event linked.")
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("Provider radio button change event linked.")
# Event handler for audio generation
generate_audio_btn.click(fn=generate_audio, inputs=[chatbot], outputs=[audio_output])
# Initialize MCP Client on app load
demo.load(init_mcp_client)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
try:
demo.launch(server_api=True)
finally:
if mcp_client:
mcp_client.close()
print("MCP Client closed.")