Spaces:
Running
Running
File size: 16,869 Bytes
038f313 1cee504 c5a20a4 ea82e64 75bf974 57cb471 038f313 57cb471 db00df1 2d6eaa5 c6bdd15 75bf974 70d58c7 75bf974 6a6b98f 70d58c7 57cb471 70d58c7 75bf974 57cb471 038f313 27c8b8d 57cb471 27c8b8d 038f313 3a64d68 98674ca 9e12544 75bf974 9e12544 57cb471 038f313 0ef95ea 57cb471 2d6eaa5 0ef95ea 9e12544 75bf974 9e12544 d92e5cd f7c4208 9e12544 8eb1697 9e12544 ba0614b 0ef95ea 038f313 45b3867 57cb471 4c304f3 57cb471 4c304f3 57cb471 4c304f3 57cb471 4c304f3 57cb471 4c304f3 57cb471 4c304f3 57cb471 2d6eaa5 901bafe 57cb471 6a6b98f 57cb471 6a6b98f 57cb471 27c8b8d d92e5cd 5b8ad4f 0ef95ea 57cb471 1cee504 3b18f78 1cee504 2d6eaa5 1cee504 5b8ad4f 57cb471 1cee504 75bf974 1cee504 2d6eaa5 23119eb 1cee504 57cb471 23119eb 1cee504 57cb471 1cee504 0ef95ea 901bafe 57cb471 d2ae72a 57cb471 75bf974 7c1212e 75bf974 70d58c7 57cb471 75bf974 57fd5c0 75bf974 57fd5c0 57cb471 57fd5c0 57cb471 57fd5c0 57cb471 57fd5c0 57cb471 57fd5c0 57cb471 57fd5c0 57cb471 06cdbf8 7c1212e 57cb471 75bf974 57cb471 75bf974 57cb471 d92e5cd 57cb471 75bf974 b0cbd1c 57cb471 75bf974 57cb471 75bf974 57cb471 75bf974 57cb471 4c304f3 57cb471 6a6b98f 57cb471 75bf974 57cb471 6a6b98f 57cb471 7c1212e 57cb471 75bf974 57cb471 a9862a1 fdab9dd 57cb471 a9862a1 9e12544 57cb471 a9862a1 9e12544 57cb471 a9862a1 57cb471 a9862a1 769901b 77298b9 a9862a1 57cb471 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
from smolagents.mcp_client import MCPClient
# Global variables for MCP Client and TTS tool
mcp_client = None
tts_tool = None
# Access token from environment
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
if isinstance(image_path, Image.Image):
image = image_path
else:
image = Image.open(image_path)
if image.mode == 'RGBA':
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
# Initialize MCP Client at startup
def init_mcp_client():
global mcp_client, tts_tool
try:
mcp_client = MCPClient({"url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"})
tools = mcp_client.get_tools()
tts_tool = next((tool for tool in tools if tool.name == "text_to_audio"), None)
if tts_tool:
print("Successfully connected to Kokoro TTS tool")
else:
print("TTS tool not found")
except Exception as e:
print(f"Error initializing MCP Client: {e}")
def respond(
message,
image_files,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model
):
print(f"Received message: {message}")
print(f"Received {len(image_files) if image_files else 0} images")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
if seed == -1:
seed = None
if image_files and len(image_files) > 0:
user_content = []
if message and message.strip():
user_content.append({"type": "text", "text": message})
for img in image_files:
if img is not None:
try:
encoded_image = encode_image(img)
if encoded_image:
user_content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
})
except Exception as e:
print(f"Error encoding image: {e}")
else:
user_content = message
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
if isinstance(user_part, tuple) and len(user_part) == 2:
history_content = []
if user_part[0]:
history_content.append({"type": "text", "text": user_part[0]})
for img in user_part[1]:
if img:
try:
encoded_img = encode_image(img)
if encoded_img:
history_content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
})
except Exception as e:
print(f"Error encoding history image: {e}")
messages.append({"role": "user", "content": history_content})
else:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context (type: {type(user_part)})")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
messages.append({"role": "user", "content": user_content})
print(f"Latest user message appended (content type: {type(user_content)})")
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
response = ""
print(f"Sending request to {provider} provider.")
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
try:
stream = client.chat_completion(
model=model_to_use,
messages=messages,
stream=True,
**parameters
)
print("Received tokens: ", end="", flush=True)
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
print(token_text, end="", flush=True)
response += token_text
yield response
print()
except Exception as e:
print(f"Error during inference: {e}")
response += f"\nError: {str(e)}"
yield response
print("Completed response generation.")
# Function to generate audio from the last bot response
def generate_audio(history):
if not history or len(history) == 0:
print("No history available for audio generation")
return None
last_message = history[-1][1] # Bot's response
if not last_message or not isinstance(last_message, str):
print("Last message is empty or not a string")
return None
if tts_tool:
try:
# Call the TTS tool directly, expecting (sample_rate, audio_array)
result = tts_tool(text=last_message, speed=1.0)
if result and len(result) == 2:
sample_rate, audio_data = result
print("Audio generated successfully")
return (sample_rate, audio_data)
else:
print("TTS tool returned invalid result")
return None
except Exception as e:
print(f"Error generating audio: {e}")
return None
else:
print("TTS tool not available")
return None
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# Gradio UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
layout="panel"
)
print("Chatbot interface created.")
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=False,
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"]
)
# Audio generation components
with gr.Row():
generate_audio_btn = gr.Button("Generate Audio from Last Response")
audio_output = gr.Audio(label="Generated Audio", type="numpy")
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
with gr.Column():
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = [
"hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"
]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here.", placeholder="Enter your Hugging Face API token", type="password")
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path.", placeholder="meta-llama/Llama-3.3-70B-Instruct")
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct"
]
featured_model_radio = gr.Radio(label="Select a model below", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
chat_history = gr.State([])
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
def set_custom_model_from_radio(selected):
print(f"Featured model selected: {selected}")
return selected
def user(user_message, history):
print(f"User message received: {user_message}")
if not user_message or (not user_message.get("text") and not user_message.get("files")):
print("Empty message, skipping")
return history
text_content = user_message.get("text", "").strip()
files = user_message.get("files", [])
print(f"Text content: {text_content}")
print(f"Files: {files}")
if not text_content and not files:
print("No content to display")
return history
if files and len(files) > 0:
if text_content:
print(f"Adding text message: {text_content}")
history.append([text_content, None])
for file_path in files:
if file_path and isinstance(file_path, str):
print(f"Adding image: {file_path}")
history.append([f"", None])
return history
else:
print(f"Adding text-only message: {text_content}")
history.append([text_content, None])
return history
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
if not history or len(history) == 0:
print("No history to process")
return history
user_message = history[-1][0]
print(f"Processing user message: {user_message}")
is_image = False
image_path = None
text_content = user_message
if isinstance(user_message, str) and user_message.startswith(":
is_image = True
image_path = user_message.replace(".replace(")", "")
print(f"Image detected: {image_path}")
text_content = ""
text_context = ""
if is_image and len(history) > 1:
prev_message = history[-2][0]
if isinstance(prev_message, str) and not prev_message.startswith(":
text_context = prev_message
print(f"Using text context from previous message: {text_context}")
history[-1][1] = ""
if is_image:
for response in respond(
text_context, [image_path], history[:-1], system_msg, max_tokens, temperature, top_p,
freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model
):
history[-1][1] = response
yield history
else:
for response in respond(
text_content, None, history[:-1], system_msg, max_tokens, temperature, top_p,
freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model
):
history[-1][1] = response
yield history
msg.submit(user, [msg, chatbot], [chatbot], queue=False).then(
bot, [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
model_search_box, featured_model_radio], [chatbot]
).then(lambda: {"text": "", "files": []}, None, [msg])
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
print("Model search box change event linked.")
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
print("Featured model radio button change event linked.")
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("BYOK textbox change event linked.")
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("Provider radio button change event linked.")
# Event handler for audio generation
generate_audio_btn.click(fn=generate_audio, inputs=[chatbot], outputs=[audio_output])
# Initialize MCP Client on app load
demo.load(init_mcp_client)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
try:
demo.launch(server_api=True)
finally:
if mcp_client:
mcp_client.close()
print("MCP Client closed.") |