Nymbo's picture
OKAY LETS SIMPLIFY THS LOL
52ad57a verified
raw
history blame
5.71 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model="meta-llama/Llama-3.3-70B-Instruct", # You can update this to your specific model
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty, # <-- NEW
seed=seed, # <-- NEW
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# As streaming progresses, yield partial output
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
MODELS_LIST = [
"meta-llama/Llama-3.1-8B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
]
def filter_models(search_term):
"""
Simple function to filter the placeholder model list based on the user's input
"""
filtered_models = [m for m in MODELS_LIST if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# --------------------------------------
# REBUILD THE INTERFACE USING BLOCKS
# --------------------------------------
print("Building Gradio interface with Blocks...")
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# Title
gr.Markdown("# Serverless-TextGen-Hub")
# Accordion: Parameters (sliders, etc.)
with gr.Accordion("Parameters", open=True):
system_message = gr.Textbox(value="", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
# Accordion: Featured Models (Below the parameters)
with gr.Accordion("Featured Models", open=False):
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
model_radio = gr.Radio(
label="Select a model below",
value=MODELS_LIST[0], # default
choices=MODELS_LIST,
interactive=True
)
model_search.change(filter_models, inputs=model_search, outputs=model_radio)
# The main ChatInterface
chat_interface = gr.ChatInterface(
fn=respond,
additional_inputs=[
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
title="Serverless-TextGen-Hub",
description="A comprehensive UI for text generation using the HF Inference API."
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()