Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the output | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Make the streaming request to the HF Inference API via openai-like client | |
for message_chunk in client.chat.completions.create( | |
model="meta-llama/Llama-3.3-70B-Instruct", # You can update this to your specific model | |
max_tokens=max_tokens, | |
stream=True, # Stream the response | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, # <-- NEW | |
seed=seed, # <-- NEW | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
# As streaming progresses, yield partial output | |
yield response | |
print("Completed response generation.") | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
MODELS_LIST = [ | |
"meta-llama/Llama-3.1-8B-Instruct", | |
"microsoft/Phi-3.5-mini-instruct", | |
] | |
def filter_models(search_term): | |
""" | |
Simple function to filter the placeholder model list based on the user's input | |
""" | |
filtered_models = [m for m in MODELS_LIST if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered_models) | |
# -------------------------------------- | |
# REBUILD THE INTERFACE USING BLOCKS | |
# -------------------------------------- | |
print("Building Gradio interface with Blocks...") | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
# Title | |
gr.Markdown("# Serverless-TextGen-Hub") | |
# Accordion: Parameters (sliders, etc.) | |
with gr.Accordion("Parameters", open=True): | |
system_message = gr.Textbox(value="", label="System message") | |
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") | |
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") | |
# Accordion: Featured Models (Below the parameters) | |
with gr.Accordion("Featured Models", open=False): | |
model_search = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1 | |
) | |
model_radio = gr.Radio( | |
label="Select a model below", | |
value=MODELS_LIST[0], # default | |
choices=MODELS_LIST, | |
interactive=True | |
) | |
model_search.change(filter_models, inputs=model_search, outputs=model_radio) | |
# The main ChatInterface | |
chat_interface = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed | |
], | |
fill_height=True, | |
chatbot=chatbot, | |
theme="Nymbo/Nymbo_Theme", | |
title="Serverless-TextGen-Hub", | |
description="A comprehensive UI for text generation using the HF Inference API." | |
) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |