File size: 5,706 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
e13eb1b
038f313
e13eb1b
038f313
 
 
 
e13eb1b
038f313
 
 
e13eb1b
69b4a5f
038f313
 
 
3a64d68
52ad57a
038f313
e13eb1b
52ad57a
 
 
 
 
 
 
 
 
e13eb1b
52ad57a
f7c4208
 
86297f5
52ad57a
 
f7c4208
52ad57a
 
 
038f313
e13eb1b
880ced6
f7c4208
 
e13eb1b
 
 
 
 
 
86297f5
e13eb1b
 
 
 
038f313
 
e13eb1b
038f313
b56d11c
f7c4208
52ad57a
e13eb1b
52ad57a
038f313
52ad57a
038f313
 
52ad57a
 
86297f5
038f313
f7c4208
86297f5
b56d11c
 
52ad57a
b56d11c
542c2ac
e13eb1b
f7c4208
52ad57a
e13eb1b
 
 
52ad57a
 
 
c20c4dd
 
 
52ad57a
 
 
 
 
 
 
 
 
 
c20c4dd
 
52ad57a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20c4dd
 
 
 
 
52ad57a
c20c4dd
52ad57a
 
 
 
 
c20c4dd
 
52ad57a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model="meta-llama/Llama-3.3-70B-Instruct",   # You can update this to your specific model
        max_tokens=max_tokens,
        stream=True,  # Stream the response
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,  # <-- NEW
        seed=seed,                             # <-- NEW
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        # As streaming progresses, yield partial output
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

MODELS_LIST = [
    "meta-llama/Llama-3.1-8B-Instruct",
    "microsoft/Phi-3.5-mini-instruct",
]

def filter_models(search_term):
    """
    Simple function to filter the placeholder model list based on the user's input
    """
    filtered_models = [m for m in MODELS_LIST if search_term.lower() in m.lower()]
    return gr.update(choices=filtered_models)

# --------------------------------------
# REBUILD THE INTERFACE USING BLOCKS
# --------------------------------------
print("Building Gradio interface with Blocks...")

with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    # Title
    gr.Markdown("# Serverless-TextGen-Hub")

    # Accordion: Parameters (sliders, etc.)
    with gr.Accordion("Parameters", open=True):
        system_message = gr.Textbox(value="", label="System message")
        max_tokens = gr.Slider(minimum=1,   maximum=4096, value=512,   step=1,   label="Max new tokens")
        temperature = gr.Slider(minimum=0.1, maximum=4.0,  value=0.7,  step=0.1, label="Temperature")
        top_p = gr.Slider(minimum=0.1, maximum=1.0,  value=0.95, step=0.05, label="Top-P")
        frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
        seed = gr.Slider(minimum=-1,  maximum=65535, value=-1,  step=1,    label="Seed (-1 for random)")

    # Accordion: Featured Models (Below the parameters)
    with gr.Accordion("Featured Models", open=False):
        model_search = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )
        model_radio = gr.Radio(
            label="Select a model below",
            value=MODELS_LIST[0],  # default
            choices=MODELS_LIST,
            interactive=True
        )
        model_search.change(filter_models, inputs=model_search, outputs=model_radio)

    # The main ChatInterface
    chat_interface = gr.ChatInterface(
        fn=respond,
        additional_inputs=[
            system_message,
            max_tokens,
            temperature,
            top_p,
            frequency_penalty,
            seed
        ],
        fill_height=True,
        chatbot=chatbot,
        theme="Nymbo/Nymbo_Theme",
        title="Serverless-TextGen-Hub",
        description="A comprehensive UI for text generation using the HF Inference API."
    )

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()