Nymbo's picture
Update app.py
21137c4 verified
raw
history blame
9.05 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- model: the selected model for text generation
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}, Model: {model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model, # Use the selected model
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# List of featured models (placeholder models for now)
featured_models = [
"meta-llama/Llama-3.3-70B-Instruct",
"gpt-3.5-turbo",
"gpt-4",
"mistralai/Mistral-7B-Instruct-v0.1",
"tiiuae/falcon-40b-instruct"
]
# Function to filter models based on search input
def filter_models(search_term):
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Create the Gradio ChatInterface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"),
gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"),
gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=featured_models, interactive=True, elem_id="model-radio")
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
# Add a "Custom Model" text box and "Featured Models" accordion
with demo:
with gr.Tab("Model Settings"):
with gr.Row():
with gr.Column():
# Textbox for custom model input
custom_model = gr.Textbox(label="Custom Model", info="Hugging Face model path (optional)", placeholder="username/model-name")
# Accordion for selecting featured models
with gr.Accordion("Featured Models", open=True):
# Textbox for searching models
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input")
# Radio buttons to select the desired model
model_radio = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=featured_models, interactive=True, elem_id="model-radio")
# Update model list when search box is used
model_search.change(filter_models, inputs=model_search, outputs=model_radio)
# Add an "Information" tab with accordions
with gr.Tab("Information"):
with gr.Row():
# Accordion for "Featured Models" with a table
with gr.Accordion("Featured Models (WiP)", open=False):
gr.HTML(
"""
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Typical Use Case</th>
<th>Notes</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>General-purpose instruction following</td>
<td>High-quality, large-scale model</td>
</tr>
<tr>
<td>gpt-3.5-turbo</td>
<td>Chat and general text generation</td>
<td>Fast and efficient</td>
</tr>
<tr>
<td>gpt-4</td>
<td>Advanced text generation</td>
<td>State-of-the-art performance</td>
</tr>
<tr>
<td>mistralai/Mistral-7B-Instruct-v0.1</td>
<td>Instruction following</td>
<td>Lightweight and efficient</td>
</tr>
<tr>
<td>tiiuae/falcon-40b-instruct</td>
<td>Instruction following</td>
<td>High-quality, large-scale model</td>
</tr>
</table>
"""
)
# Accordion for "Parameters Overview" with markdown
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
## System Message
###### This is the initial prompt that sets the behavior of the model. It can be used to define the tone, style, or role of the assistant.
## Max Tokens
###### This controls the maximum length of the generated response. Higher values allow for longer responses but may take more time to generate.
## Temperature
###### This controls the randomness of the output. Lower values make the model more deterministic, while higher values make it more creative.
## Top-P
###### This controls the diversity of the output by limiting the model to the most likely tokens. Lower values make the output more focused, while higher values allow for more diversity.
## Frequency Penalty
###### This penalizes repeated tokens in the output. Higher values discourage repetition, while lower values allow for more repetitive outputs.
## Seed
###### This sets a fixed seed for reproducibility. A value of -1 means the seed is random.
## Model
###### This selects the model used for text generation. You can choose from featured models or specify a custom model.
"""
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()