File size: 6,912 Bytes
aac338f
0824d60
 
 
 
 
 
aac338f
 
0824d60
 
aac338f
 
0824d60
 
 
 
 
 
 
 
 
 
 
 
aac338f
 
0824d60
bbc9212
0824d60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc9212
0824d60
 
 
 
 
 
 
 
 
 
 
bbc9212
0824d60
bbc9212
509cb06
0824d60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac338f
0824d60
 
 
 
 
 
 
 
b48f587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75d3641
b48f587
 
 
 
0824d60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac338f
0824d60
aac338f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
from random import randint
from all_models import models

from externalmod import gr_Interface_load, randomize_seed

import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


def load_fn(models):
    global models_load
    models_load = {}
    
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)


num_models = 6

default_models = models[:num_models]
inference_timeout = 600
MAX_SEED=3999999999
starting_seed = randint(1941, 2024)

def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]

async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    noise = ""
    kwargs["seed"] = seed
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None


def gen_fnseed(model_str, prompt, seed=1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
    finally:
        loop.close()
    return result

with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML("<h1>My Gradio Interface</h1>")  # Add this line to include the HTML title
    with gr.Tab('Compare-6'): 
        txt_input = gr.Textbox(label='Your prompt:', lines=4)
        gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
        with gr.Row():
            seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
            seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)    
        seed_rand.click(randomize_seed, None, [seed], queue=False)
        #stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
               
        gen_button.click(lambda s: gr.update(interactive = True), None)
        
    with gr.Tab("Advanced Settings"):
        with gr.Row():
            # Textbox for specifying elements to exclude from the image
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
        with gr.Row():
            # Slider for selecting the image width
            width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
            # Slider for selecting the image height
            height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
        with gr.Row():
            # Slider for setting the number of sampling steps
            steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
        with gr.Row():
            # Slider for adjusting the CFG scale (guidance scale)
            cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
        with gr.Row():
            # Slider for adjusting the transformation strength
            strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
        with gr.Row():
            # Slider for setting the seed for reproducibility
            seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
        with gr.Row():
            # Radio buttons for selecting the sampling method
            method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])

        gr.HTML(
        """
            <div style="text-align: center; max-width: 1200px; margin: 0 auto;">
              <div>
                <body>
                <div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images and select models.</p>
                </div>
                </body>
              </div>
            </div>
        """
               )
        with gr.Row():
            output = [gr.Image(label = m, min_width=480) for m in default_models]
            current_models = [gr.Textbox(m, visible = False) for m in default_models]
                        
            for m, o in zip(current_models, output):
                gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
                            inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
                #stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
        with gr.Accordion('Model selection'):
            model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
            #model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 2 available! Untick them to only use one!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
            model_choice.change(update_imgbox, model_choice, output)
            model_choice.change(extend_choices, model_choice, current_models)
        with gr.Row():
            gr.HTML(
)

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)