Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,99 +1,123 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
from externalmod import gr_Interface_load, randomize_seed
|
| 6 |
-
|
| 7 |
-
import asyncio
|
| 8 |
import os
|
|
|
|
|
|
|
|
|
|
| 9 |
from threading import RLock
|
| 10 |
-
lock = RLock()
|
| 11 |
-
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def load_fn(models):
|
| 15 |
-
global models_load
|
| 16 |
-
models_load = {}
|
| 17 |
-
|
| 18 |
-
for model in models:
|
| 19 |
-
if model not in models_load.keys():
|
| 20 |
-
try:
|
| 21 |
-
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
| 22 |
-
except Exception as error:
|
| 23 |
-
print(error)
|
| 24 |
-
m = gr.Interface(lambda: None, ['text'], ['image'])
|
| 25 |
-
models_load.update({model: m})
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
MAX_SEED=3999999999
|
| 36 |
-
starting_seed = randint(1941, 2024)
|
| 37 |
-
|
| 38 |
-
def extend_choices(choices):
|
| 39 |
-
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
|
| 40 |
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
try:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
print(f
|
| 59 |
-
if not task.done(): task.cancel()
|
| 60 |
-
result = None
|
| 61 |
-
if task.done() and result is not None:
|
| 62 |
-
with lock:
|
| 63 |
-
png_path = "image.png"
|
| 64 |
-
result.save(png_path)
|
| 65 |
-
image = str(Path(png_path).resolve())
|
| 66 |
return image
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
except (Exception, asyncio.CancelledError) as e:
|
| 77 |
-
print(e)
|
| 78 |
-
print(f"Task aborted: {model_str}")
|
| 79 |
-
result = None
|
| 80 |
-
finally:
|
| 81 |
-
loop.close()
|
| 82 |
-
return result
|
| 83 |
-
|
| 84 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
| 85 |
-
gr.HTML("<h1>Compare 6</h1>")
|
| 86 |
-
with gr.Tab('Compare-6'):
|
| 87 |
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
|
| 91 |
-
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
|
| 92 |
-
seed_rand.click(randomize_seed, None, [seed], queue=False)
|
| 93 |
-
#stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
|
| 94 |
-
|
| 95 |
-
gen_button.click(lambda s: gr.update(interactive = True), None)
|
| 96 |
|
|
|
|
| 97 |
with gr.Tab("Advanced Settings"):
|
| 98 |
with gr.Row():
|
| 99 |
# Textbox for specifying elements to exclude from the image
|
|
@@ -119,34 +143,9 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 119 |
# Radio buttons for selecting the sampling method
|
| 120 |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
| 125 |
-
<div>
|
| 126 |
-
<body>
|
| 127 |
-
<div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images and select models.</p>
|
| 128 |
-
</div>
|
| 129 |
-
</body>
|
| 130 |
-
</div>
|
| 131 |
-
</div>
|
| 132 |
-
"""
|
| 133 |
-
)
|
| 134 |
-
with gr.Row():
|
| 135 |
-
output = [gr.Image(label = m, min_width=480) for m in default_models]
|
| 136 |
-
current_models = [gr.Textbox(m, visible = False) for m in default_models]
|
| 137 |
-
|
| 138 |
-
for m, o in zip(current_models, output):
|
| 139 |
-
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
|
| 140 |
-
inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
|
| 141 |
-
#stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
|
| 142 |
-
with gr.Accordion('Model selection'):
|
| 143 |
-
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
|
| 144 |
-
#model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 2 available! Untick them to only use one!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
|
| 145 |
-
model_choice.change(update_imgbox, model_choice, output)
|
| 146 |
-
model_choice.change(extend_choices, model_choice, current_models)
|
| 147 |
-
with gr.Row():
|
| 148 |
-
gr.HTML(
|
| 149 |
-
)
|
| 150 |
|
| 151 |
-
|
|
|
|
| 152 |
demo.launch(show_api=False, max_threads=400)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import io
|
| 4 |
+
import random
|
|
|
|
|
|
|
|
|
|
| 5 |
import os
|
| 6 |
+
import time
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import json
|
| 9 |
from threading import RLock
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Project by Nymbo
|
| 12 |
|
| 13 |
+
# Base API URL for Hugging Face inference
|
| 14 |
+
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
| 15 |
+
# Retrieve the API token from environment variables
|
| 16 |
+
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
| 17 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 18 |
+
# Timeout for requests
|
| 19 |
+
timeout = 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
lock = RLock()
|
| 22 |
|
| 23 |
+
# Function to query the Hugging Face API for image generation
|
| 24 |
+
def query(prompt, model, negative_prompt, steps, cfg_scale, sampler, seed, strength, width, height):
|
| 25 |
+
# Debug log to indicate function start
|
| 26 |
+
print("Starting query function...")
|
| 27 |
+
# Print the parameters for debugging purposes
|
| 28 |
+
print(f"Prompt: {prompt}")
|
| 29 |
+
print(f"Model: {model}")
|
| 30 |
+
print(f"Parameters - Steps: {steps}, CFG Scale: {cfg_scale}, Seed: {seed}, Strength: {strength}, Width: {width}, Height: {height}")
|
| 31 |
+
|
| 32 |
+
# Check if the prompt is empty or None
|
| 33 |
+
if prompt == "" or prompt is None:
|
| 34 |
+
print("Prompt is empty or None. Exiting query function.") # Debug log
|
| 35 |
+
return None
|
| 36 |
|
| 37 |
+
# Randomly select an API token from available options to distribute the load
|
| 38 |
+
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")])
|
| 39 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 40 |
+
print(f"Selected API token: {API_TOKEN}") # Debug log
|
| 41 |
+
|
| 42 |
+
# Enhance the prompt with additional details for better quality
|
| 43 |
+
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
| 44 |
+
print(f'Generation: {prompt}') # Debug log
|
| 45 |
+
|
| 46 |
+
# Set the API URL based on the selected model
|
| 47 |
+
if model == 'Stable Diffusion XL':
|
| 48 |
+
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
| 49 |
+
# Add more model options as needed
|
| 50 |
+
print(f"API URL set to: {API_URL}") # Debug log
|
| 51 |
+
|
| 52 |
+
# Define the payload for the request
|
| 53 |
+
payload = {
|
| 54 |
+
"inputs": prompt,
|
| 55 |
+
"negative_prompt": negative_prompt,
|
| 56 |
+
"steps": steps, # Number of sampling steps
|
| 57 |
+
"cfg_scale": cfg_scale, # Scale for controlling adherence to prompt
|
| 58 |
+
"seed": seed if seed != -1 else random.randint(1, 1000000000), # Random seed for reproducibility
|
| 59 |
+
"strength": strength, # How strongly the model should transform the image
|
| 60 |
+
"parameters": {
|
| 61 |
+
"width": width, # Width of the generated image
|
| 62 |
+
"height": height # Height of the generated image
|
| 63 |
+
}
|
| 64 |
+
}
|
| 65 |
+
print(f"Payload: {json.dumps(payload, indent=2)}") # Debug log
|
| 66 |
+
|
| 67 |
+
# Make a request to the API to generate the image
|
| 68 |
+
try:
|
| 69 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
| 70 |
+
print(f"Response status code: {response.status_code}") # Debug log
|
| 71 |
+
except requests.exceptions.RequestException as e:
|
| 72 |
+
# Log any request exceptions and raise an error for the user
|
| 73 |
+
print(f"Request failed: {e}") # Debug log
|
| 74 |
+
raise gr.Error(f"Request failed: {e}")
|
| 75 |
+
|
| 76 |
+
# Check if the response status is not successful
|
| 77 |
+
if response.status_code != 200:
|
| 78 |
+
print(f"Error: Failed to retrieve image. Response status: {response.status_code}") # Debug log
|
| 79 |
+
print(f"Response content: {response.text}") # Debug log
|
| 80 |
+
if response.status_code == 400:
|
| 81 |
+
raise gr.Error(f"{response.status_code}: Bad Request - There might be an issue with the input parameters.")
|
| 82 |
+
elif response.status_code == 401:
|
| 83 |
+
raise gr.Error(f"{response.status_code}: Unauthorized - Please check your API token.")
|
| 84 |
+
elif response.status_code == 403:
|
| 85 |
+
raise gr.Error(f"{response.status_code}: Forbidden - You do not have permission to access this model.")
|
| 86 |
+
elif response.status_code == 404:
|
| 87 |
+
raise gr.Error(f"{response.status_code}: Not Found - The requested model could not be found.")
|
| 88 |
+
elif response.status_code == 503:
|
| 89 |
+
raise gr.Error(f"{response.status_code}: The model is being loaded. Please try again later.")
|
| 90 |
+
else:
|
| 91 |
+
raise gr.Error(f"{response.status_code}: An unexpected error occurred.")
|
| 92 |
+
|
| 93 |
try:
|
| 94 |
+
# Attempt to read the image from the response content
|
| 95 |
+
image_bytes = response.content
|
| 96 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 97 |
+
print(f'Generation completed! ({prompt})') # Debug log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
return image
|
| 99 |
+
except Exception as e:
|
| 100 |
+
# Handle any errors that occur when opening the image
|
| 101 |
+
print(f"Error while trying to open image: {e}") # Debug log
|
| 102 |
+
return None
|
| 103 |
|
| 104 |
+
# Custom CSS to hide the footer in the interface
|
| 105 |
+
css = """
|
| 106 |
+
* {}
|
| 107 |
+
footer {visibility: hidden !important;}
|
| 108 |
+
"""
|
| 109 |
|
| 110 |
+
print("Initializing Gradio interface...") # Debug log
|
| 111 |
+
|
| 112 |
+
# Define the Gradio interface
|
| 113 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
|
| 114 |
+
# Tab for basic settings
|
| 115 |
+
with gr.Tab('Basic Settings'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
| 117 |
+
model = gr.Radio(label="Select a model", value="Stable Diffusion XL", choices=["Stable Diffusion XL", "Stable Diffusion 3", "FLUX.1 [Schnell]", "RealVisXL v4.0", "Duchaiten Real3D NSFW XL", "Tempest v0.1"], interactive=True)
|
| 118 |
+
gen_button = gr.Button('Generate Image')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
# Tab for advanced settings
|
| 121 |
with gr.Tab("Advanced Settings"):
|
| 122 |
with gr.Row():
|
| 123 |
# Textbox for specifying elements to exclude from the image
|
|
|
|
| 143 |
# Radio buttons for selecting the sampling method
|
| 144 |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 145 |
|
| 146 |
+
# Set up button click event to call the query function
|
| 147 |
+
gen_button.click(query, inputs=[txt_input, model, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=gr.Image(type="pil", label="Generated Image"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
print("Launching Gradio interface...") # Debug log
|
| 150 |
+
# Launch the Gradio interface without showing the API or sharing externally
|
| 151 |
demo.launch(show_api=False, max_threads=400)
|