File size: 5,119 Bytes
4d6e8c2
 
 
 
74ee339
4d6e8c2
ab18efc
 
4d6e8c2
 
 
 
 
 
b3f06b6
 
 
 
 
 
 
 
 
1c33274
d11f2f9
ab18efc
3ec6adb
d11f2f9
b3f06b6
d11f2f9
 
 
 
a5a3465
d11f2f9
 
b3f06b6
 
ab18efc
 
b3f06b6
ab18efc
 
 
 
 
b3f06b6
ab18efc
b3f06b6
 
74ee339
ab18efc
 
 
 
b3f06b6
 
ab18efc
 
 
b3f06b6
 
 
ab18efc
b3f06b6
ab18efc
74ee339
b3f06b6
 
ab18efc
 
 
b3f06b6
 
 
 
 
4d6e8c2
70f5f26
b3f06b6
70f5f26
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
b3f06b6
4d6e8c2
 
 
 
 
 
 
 
 
b3f06b6
 
 
4d6e8c2
b3f06b6
4d6e8c2
 
 
70f5f26
b3f06b6
70f5f26
 
b3f06b6
6b11a89
cc921f8
b3f06b6
 
 
 
 
 
ab18efc
b3f06b6
70f5f26
b3f06b6
70f5f26
4d6e8c2
 
b3f06b6
4d6e8c2
 
b3f06b6
4d6e8c2
 
 
 
 
b3f06b6
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
b3f06b6
 
4d6e8c2
b3f06b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import numpy as np
import random
import torch
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTIONS = {
    "baseline": "baseline most common class",
    "bert-base": "bert base finetuned",
    "bert-medium": "to be implemented",
    "bert-small": "to be implemented",
    "bert-mini": "to be implemented",
    "bert-tiny": "to be implemented",
}

ROUTE = "/text"


def baseline_model(dataset_length: int):
    # Make random predictions (placeholder for actual model inference)
    # predictions = [random.randint(0, 7) for _ in range(dataset_length)]

    # My favorate baseline is the most common class.
    predictions = [0] * dataset_length

    return predictions


def bert_model(test_dataset: dict, model_type: str):
    print("Starting my code block.")
    texts = test_dataset["quote"]

    model_repo = f"Nonnormalizable/frugal-ai-text-{model_type}"
    config = AutoConfig.from_pretrained(model_repo)
    model = AutoModelForSequenceClassification.from_pretrained(model_repo)
    tokenizer = AutoTokenizer.from_pretrained(model_repo)

    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
    print("device:", device)
    model = model.to(device)
    test_encoding = tokenizer(
        texts,
        truncation=True,
        padding=True,
        return_tensors="pt",
    )

    model.eval()
    with torch.no_grad():
        test_input_ids = test_encoding["input_ids"].to(device)
        test_attention_mask = test_encoding["attention_mask"].to(device)
        print("Starting model run.")
        outputs = model(test_input_ids, test_attention_mask)
        print("End of model run.")
        predictions = torch.argmax(outputs.logits, dim=1)
        predictions = predictions.cpu().numpy()

    print("End of my code block.")
    return predictions


@router.post(ROUTE, tags=["Text Task"])
async def evaluate_text(
    request: TextEvaluationRequest,
    model_type="bert-base",
):
    """
    Evaluate text classification for climate disinformation detection.

    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7,
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(
        test_size=request.test_size, seed=request.test_seed
    )
    test_dataset = train_test["test"]

    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    # --------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    # --------------------------------------------------------------------------------------------

    true_labels = test_dataset["label"]
    if model_type == "baseline":
        predictions = baseline_model(len(true_labels))
    elif model_type[:5] == "bert-":
        predictions = bert_model(test_dataset, model_type)
    else:
        raise ValueError(model_type)

    # --------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    # --------------------------------------------------------------------------------------------

    # Stop tracking emissions
    emissions_data = tracker.stop_task()

    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)

    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTIONS[model_type],
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed,
        },
    }

    return results