Commit
·
ab18efc
1
Parent(s):
3ec6adb
Point submission at my first bert model in HF.
Browse files- Finetune BERT.ipynb +402 -83
- tasks/text.py +41 -3
Finetune BERT.ipynb
CHANGED
@@ -6,11 +6,11 @@
|
|
6 |
"id": "73e72549-69f2-46b5-b0f5-655777139972",
|
7 |
"metadata": {
|
8 |
"execution": {
|
9 |
-
"iopub.execute_input": "2025-01-
|
10 |
-
"iopub.status.busy": "2025-01-
|
11 |
-
"iopub.status.idle": "2025-01-
|
12 |
-
"shell.execute_reply": "2025-01-
|
13 |
-
"shell.execute_reply.started": "2025-01-
|
14 |
}
|
15 |
},
|
16 |
"outputs": [],
|
@@ -20,6 +20,7 @@
|
|
20 |
"import torch\n",
|
21 |
"from torch import nn\n",
|
22 |
"from transformers import BertTokenizer, BertModel\n",
|
|
|
23 |
"from torch.utils.data import Dataset, DataLoader\n",
|
24 |
"from datasets import load_dataset"
|
25 |
]
|
@@ -27,14 +28,32 @@
|
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
"execution_count": 2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"id": "d4b79fb9-5e70-4600-8885-94bc0a6e917c",
|
31 |
"metadata": {
|
32 |
"execution": {
|
33 |
-
"iopub.execute_input": "2025-01-
|
34 |
-
"iopub.status.busy": "2025-01-
|
35 |
-
"iopub.status.idle": "2025-01-
|
36 |
-
"shell.execute_reply": "2025-01-
|
37 |
-
"shell.execute_reply.started": "2025-01-
|
38 |
}
|
39 |
},
|
40 |
"outputs": [],
|
@@ -43,12 +62,12 @@
|
|
43 |
" time_str = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
44 |
" print(time_str, x)\n",
|
45 |
"\n",
|
46 |
-
"class BertClassifier(nn.Module):\n",
|
47 |
-
" def __init__(self,
|
48 |
" super().__init__()\n",
|
49 |
" self.bert = BertModel.from_pretrained(bert_variety)\n",
|
50 |
" self.dropout = nn.Dropout(0.05)\n",
|
51 |
-
" self.classifier = nn.Linear(self.bert.pooler.dense.out_features,
|
52 |
"\n",
|
53 |
" def forward(self, input_ids, attention_mask):\n",
|
54 |
" outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)\n",
|
@@ -58,7 +77,7 @@
|
|
58 |
" return logits\n",
|
59 |
"\n",
|
60 |
"class TextDataset(Dataset):\n",
|
61 |
-
" def __init__(self, texts, labels, tokenizer, max_length=
|
62 |
" self.encodings = tokenizer(\n",
|
63 |
" texts,\n",
|
64 |
" truncation=True,\n",
|
@@ -104,15 +123,15 @@
|
|
104 |
},
|
105 |
{
|
106 |
"cell_type": "code",
|
107 |
-
"execution_count":
|
108 |
"id": "07131bce-23ad-4787-8622-cce401f3e5ce",
|
109 |
"metadata": {
|
110 |
"execution": {
|
111 |
-
"iopub.execute_input": "2025-01-
|
112 |
-
"iopub.status.busy": "2025-01-
|
113 |
-
"iopub.status.idle": "2025-01-
|
114 |
-
"shell.execute_reply": "2025-01-
|
115 |
-
"shell.execute_reply.started": "2025-01-
|
116 |
}
|
117 |
},
|
118 |
"outputs": [],
|
@@ -128,15 +147,15 @@
|
|
128 |
},
|
129 |
{
|
130 |
"cell_type": "code",
|
131 |
-
"execution_count":
|
132 |
"id": "695bc080-bbd7-4937-af5b-50db1c936500",
|
133 |
"metadata": {
|
134 |
"execution": {
|
135 |
-
"iopub.execute_input": "2025-01-
|
136 |
-
"iopub.status.busy": "2025-01-
|
137 |
-
"iopub.status.idle": "2025-01-
|
138 |
-
"shell.execute_reply": "2025-01-
|
139 |
-
"shell.execute_reply.started": "2025-01-
|
140 |
}
|
141 |
},
|
142 |
"outputs": [],
|
@@ -179,15 +198,15 @@
|
|
179 |
},
|
180 |
{
|
181 |
"cell_type": "code",
|
182 |
-
"execution_count":
|
183 |
"id": "792fd13f-e7cc-4d90-832d-c0da15e193cd",
|
184 |
"metadata": {
|
185 |
"execution": {
|
186 |
-
"iopub.execute_input": "2025-01-
|
187 |
-
"iopub.status.busy": "2025-01-
|
188 |
-
"iopub.status.idle": "2025-01-
|
189 |
-
"shell.execute_reply": "2025-01-
|
190 |
-
"shell.execute_reply.started": "2025-01-
|
191 |
}
|
192 |
},
|
193 |
"outputs": [
|
@@ -195,18 +214,18 @@
|
|
195 |
"name": "stdout",
|
196 |
"output_type": "stream",
|
197 |
"text": [
|
198 |
-
"2025-01-
|
199 |
-
"2025-01-
|
200 |
-
"2025-01-
|
201 |
-
"2025-01-
|
202 |
]
|
203 |
}
|
204 |
],
|
205 |
"source": [
|
206 |
"model, tokenizer = run_training(\n",
|
207 |
-
" max_dataset_size=16 *
|
208 |
" bert_variety='bert-base-uncased',\n",
|
209 |
-
" max_length=
|
210 |
" num_epochs=3,\n",
|
211 |
" batch_size=32,\n",
|
212 |
")"
|
@@ -214,15 +233,15 @@
|
|
214 |
},
|
215 |
{
|
216 |
"cell_type": "code",
|
217 |
-
"execution_count":
|
218 |
"id": "0aedfcca-843e-4f4c-8062-3e4625161bcc",
|
219 |
"metadata": {
|
220 |
"execution": {
|
221 |
-
"iopub.execute_input": "2025-01-
|
222 |
-
"iopub.status.busy": "2025-01-
|
223 |
-
"iopub.status.idle": "2025-01-
|
224 |
-
"shell.execute_reply": "2025-01-
|
225 |
-
"shell.execute_reply.started": "2025-01-
|
226 |
}
|
227 |
},
|
228 |
"outputs": [
|
@@ -230,7 +249,7 @@
|
|
230 |
"name": "stdout",
|
231 |
"output_type": "stream",
|
232 |
"text": [
|
233 |
-
"2025-01-
|
234 |
]
|
235 |
}
|
236 |
],
|
@@ -367,15 +386,15 @@
|
|
367 |
},
|
368 |
{
|
369 |
"cell_type": "code",
|
370 |
-
"execution_count":
|
371 |
"id": "28354e8c-886a-4523-8968-8c688c13f6a3",
|
372 |
"metadata": {
|
373 |
"execution": {
|
374 |
-
"iopub.execute_input": "2025-01-
|
375 |
-
"iopub.status.busy": "2025-01-
|
376 |
-
"iopub.status.idle": "2025-01-
|
377 |
-
"shell.execute_reply": "2025-01-
|
378 |
-
"shell.execute_reply.started": "2025-01-
|
379 |
}
|
380 |
},
|
381 |
"outputs": [
|
@@ -383,10 +402,10 @@
|
|
383 |
"name": "stdout",
|
384 |
"output_type": "stream",
|
385 |
"text": [
|
386 |
-
"2025-01-
|
387 |
-
"2025-01-
|
388 |
-
"2025-01-
|
389 |
-
"2025-01-
|
390 |
]
|
391 |
}
|
392 |
],
|
@@ -400,17 +419,60 @@
|
|
400 |
")"
|
401 |
]
|
402 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
{
|
404 |
"cell_type": "code",
|
405 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
"id": "e3b099c6-6b98-473b-8797-5032213b9fcb",
|
407 |
"metadata": {
|
408 |
"execution": {
|
409 |
-
"iopub.execute_input": "2025-01-
|
410 |
-
"iopub.status.busy": "2025-01-
|
411 |
-
"iopub.status.idle": "2025-01-
|
412 |
-
"shell.execute_reply": "2025-01-
|
413 |
-
"shell.execute_reply.started": "2025-01-
|
414 |
}
|
415 |
},
|
416 |
"outputs": [
|
@@ -418,12 +480,12 @@
|
|
418 |
"name": "stdout",
|
419 |
"output_type": "stream",
|
420 |
"text": [
|
421 |
-
"2025-01-
|
422 |
]
|
423 |
}
|
424 |
],
|
425 |
"source": [
|
426 |
-
"
|
427 |
"test_text = [\n",
|
428 |
" 'This was a great experience!', # 0_not_relevant\n",
|
429 |
" 'My favorite hike is Laguna de los Tres.', # 0_not_relevant\n",
|
@@ -433,7 +495,7 @@
|
|
433 |
" 'Solar panels emit bad vibes.', # 4_solutions_harmful_unnecessary\n",
|
434 |
" 'All those so-called scientists are Democrats.', # 6_proponents_biased\n",
|
435 |
"]\n",
|
436 |
-
"test_encoding =
|
437 |
" test_text,\n",
|
438 |
" truncation=True,\n",
|
439 |
" padding=True,\n",
|
@@ -443,46 +505,101 @@
|
|
443 |
"with torch.no_grad():\n",
|
444 |
" test_input_ids = test_encoding['input_ids'].to(device)\n",
|
445 |
" test_attention_mask = test_encoding['attention_mask'].to(device)\n",
|
446 |
-
" outputs =
|
447 |
" predictions = torch.argmax(outputs, dim=1)\n",
|
448 |
" my_print(f'Predictions: {predictions}')"
|
449 |
]
|
450 |
},
|
451 |
{
|
452 |
"cell_type": "code",
|
453 |
-
"execution_count":
|
454 |
"id": "befb94b5-88bf-40fc-8b26-cf373d1256e0",
|
455 |
"metadata": {
|
456 |
"execution": {
|
457 |
-
"iopub.execute_input": "2025-01-
|
458 |
-
"iopub.status.busy": "2025-01-
|
459 |
-
"iopub.status.idle": "2025-01-
|
460 |
-
"shell.execute_reply": "2025-01-
|
461 |
-
"shell.execute_reply.started": "2025-01-
|
462 |
}
|
463 |
},
|
464 |
"outputs": [
|
465 |
{
|
466 |
-
"
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
"
|
473 |
-
|
474 |
-
|
475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
}
|
477 |
],
|
478 |
"source": [
|
479 |
-
"
|
480 |
]
|
481 |
},
|
482 |
{
|
483 |
"cell_type": "code",
|
484 |
-
"execution_count":
|
485 |
"id": "251ef9ee-8ba3-495f-8fe6-a93aa63168ce",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
"metadata": {},
|
487 |
"outputs": [],
|
488 |
"source": []
|
@@ -505,6 +622,208 @@
|
|
505 |
"nbconvert_exporter": "python",
|
506 |
"pygments_lexer": "ipython3",
|
507 |
"version": "3.13.1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
}
|
509 |
},
|
510 |
"nbformat": 4,
|
|
|
6 |
"id": "73e72549-69f2-46b5-b0f5-655777139972",
|
7 |
"metadata": {
|
8 |
"execution": {
|
9 |
+
"iopub.execute_input": "2025-01-17T18:17:50.964659Z",
|
10 |
+
"iopub.status.busy": "2025-01-17T18:17:50.964450Z",
|
11 |
+
"iopub.status.idle": "2025-01-17T18:17:53.646932Z",
|
12 |
+
"shell.execute_reply": "2025-01-17T18:17:53.646697Z",
|
13 |
+
"shell.execute_reply.started": "2025-01-17T18:17:50.964637Z"
|
14 |
}
|
15 |
},
|
16 |
"outputs": [],
|
|
|
20 |
"import torch\n",
|
21 |
"from torch import nn\n",
|
22 |
"from transformers import BertTokenizer, BertModel\n",
|
23 |
+
"from huggingface_hub import PyTorchModelHubMixin, notebook_login\n",
|
24 |
"from torch.utils.data import Dataset, DataLoader\n",
|
25 |
"from datasets import load_dataset"
|
26 |
]
|
|
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
"execution_count": 2,
|
31 |
+
"id": "07e0787e-c72b-41f3-baba-43cef3f8d6f8",
|
32 |
+
"metadata": {
|
33 |
+
"execution": {
|
34 |
+
"iopub.execute_input": "2025-01-17T18:17:53.648499Z",
|
35 |
+
"iopub.status.busy": "2025-01-17T18:17:53.648417Z",
|
36 |
+
"iopub.status.idle": "2025-01-17T18:17:53.650284Z",
|
37 |
+
"shell.execute_reply": "2025-01-17T18:17:53.650113Z",
|
38 |
+
"shell.execute_reply.started": "2025-01-17T18:17:53.648489Z"
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"notebook_login(new_session=False)"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 11,
|
49 |
"id": "d4b79fb9-5e70-4600-8885-94bc0a6e917c",
|
50 |
"metadata": {
|
51 |
"execution": {
|
52 |
+
"iopub.execute_input": "2025-01-17T18:35:15.421761Z",
|
53 |
+
"iopub.status.busy": "2025-01-17T18:35:15.421353Z",
|
54 |
+
"iopub.status.idle": "2025-01-17T18:35:15.433782Z",
|
55 |
+
"shell.execute_reply": "2025-01-17T18:35:15.433001Z",
|
56 |
+
"shell.execute_reply.started": "2025-01-17T18:35:15.421734Z"
|
57 |
}
|
58 |
},
|
59 |
"outputs": [],
|
|
|
62 |
" time_str = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
63 |
" print(time_str, x)\n",
|
64 |
"\n",
|
65 |
+
"class BertClassifier(nn.Module, PyTorchModelHubMixin):\n",
|
66 |
+
" def __init__(self, num_labels=8, bert_variety='bert-base-uncased'):\n",
|
67 |
" super().__init__()\n",
|
68 |
" self.bert = BertModel.from_pretrained(bert_variety)\n",
|
69 |
" self.dropout = nn.Dropout(0.05)\n",
|
70 |
+
" self.classifier = nn.Linear(self.bert.pooler.dense.out_features, num_labels)\n",
|
71 |
"\n",
|
72 |
" def forward(self, input_ids, attention_mask):\n",
|
73 |
" outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)\n",
|
|
|
77 |
" return logits\n",
|
78 |
"\n",
|
79 |
"class TextDataset(Dataset):\n",
|
80 |
+
" def __init__(self, texts, labels, tokenizer, max_length=512):\n",
|
81 |
" self.encodings = tokenizer(\n",
|
82 |
" texts,\n",
|
83 |
" truncation=True,\n",
|
|
|
123 |
},
|
124 |
{
|
125 |
"cell_type": "code",
|
126 |
+
"execution_count": 4,
|
127 |
"id": "07131bce-23ad-4787-8622-cce401f3e5ce",
|
128 |
"metadata": {
|
129 |
"execution": {
|
130 |
+
"iopub.execute_input": "2025-01-17T18:17:57.885732Z",
|
131 |
+
"iopub.status.busy": "2025-01-17T18:17:57.884455Z",
|
132 |
+
"iopub.status.idle": "2025-01-17T18:17:57.919509Z",
|
133 |
+
"shell.execute_reply": "2025-01-17T18:17:57.919081Z",
|
134 |
+
"shell.execute_reply.started": "2025-01-17T18:17:57.885667Z"
|
135 |
}
|
136 |
},
|
137 |
"outputs": [],
|
|
|
147 |
},
|
148 |
{
|
149 |
"cell_type": "code",
|
150 |
+
"execution_count": 5,
|
151 |
"id": "695bc080-bbd7-4937-af5b-50db1c936500",
|
152 |
"metadata": {
|
153 |
"execution": {
|
154 |
+
"iopub.execute_input": "2025-01-17T18:17:58.556031Z",
|
155 |
+
"iopub.status.busy": "2025-01-17T18:17:58.555349Z",
|
156 |
+
"iopub.status.idle": "2025-01-17T18:17:58.564519Z",
|
157 |
+
"shell.execute_reply": "2025-01-17T18:17:58.563640Z",
|
158 |
+
"shell.execute_reply.started": "2025-01-17T18:17:58.555979Z"
|
159 |
}
|
160 |
},
|
161 |
"outputs": [],
|
|
|
198 |
},
|
199 |
{
|
200 |
"cell_type": "code",
|
201 |
+
"execution_count": 19,
|
202 |
"id": "792fd13f-e7cc-4d90-832d-c0da15e193cd",
|
203 |
"metadata": {
|
204 |
"execution": {
|
205 |
+
"iopub.execute_input": "2025-01-17T15:22:41.286449Z",
|
206 |
+
"iopub.status.busy": "2025-01-17T15:22:41.285811Z",
|
207 |
+
"iopub.status.idle": "2025-01-17T15:24:35.507909Z",
|
208 |
+
"shell.execute_reply": "2025-01-17T15:24:35.506587Z",
|
209 |
+
"shell.execute_reply.started": "2025-01-17T15:22:41.286404Z"
|
210 |
}
|
211 |
},
|
212 |
"outputs": [
|
|
|
214 |
"name": "stdout",
|
215 |
"output_type": "stream",
|
216 |
"text": [
|
217 |
+
"2025-01-17 07:22:44 Starting epoch 1.\n",
|
218 |
+
"2025-01-17 07:23:21 Epoch 1/3 done, Average Loss: 1.8129\n",
|
219 |
+
"2025-01-17 07:23:58 Epoch 2/3 done, Average Loss: 1.3089\n",
|
220 |
+
"2025-01-17 07:24:35 Epoch 3/3 done, Average Loss: 0.8916\n"
|
221 |
]
|
222 |
}
|
223 |
],
|
224 |
"source": [
|
225 |
"model, tokenizer = run_training(\n",
|
226 |
+
" max_dataset_size=16 * 100,\n",
|
227 |
" bert_variety='bert-base-uncased',\n",
|
228 |
+
" max_length=128,\n",
|
229 |
" num_epochs=3,\n",
|
230 |
" batch_size=32,\n",
|
231 |
")"
|
|
|
233 |
},
|
234 |
{
|
235 |
"cell_type": "code",
|
236 |
+
"execution_count": 21,
|
237 |
"id": "0aedfcca-843e-4f4c-8062-3e4625161bcc",
|
238 |
"metadata": {
|
239 |
"execution": {
|
240 |
+
"iopub.execute_input": "2025-01-17T15:24:46.754460Z",
|
241 |
+
"iopub.status.busy": "2025-01-17T15:24:46.753753Z",
|
242 |
+
"iopub.status.idle": "2025-01-17T15:24:47.249458Z",
|
243 |
+
"shell.execute_reply": "2025-01-17T15:24:47.249207Z",
|
244 |
+
"shell.execute_reply.started": "2025-01-17T15:24:46.754391Z"
|
245 |
}
|
246 |
},
|
247 |
"outputs": [
|
|
|
249 |
"name": "stdout",
|
250 |
"output_type": "stream",
|
251 |
"text": [
|
252 |
+
"2025-01-17 07:24:47 Predictions: tensor([0, 1, 3, 6, 2, 3, 6], device='mps:0')\n"
|
253 |
]
|
254 |
}
|
255 |
],
|
|
|
386 |
},
|
387 |
{
|
388 |
"cell_type": "code",
|
389 |
+
"execution_count": 12,
|
390 |
"id": "28354e8c-886a-4523-8968-8c688c13f6a3",
|
391 |
"metadata": {
|
392 |
"execution": {
|
393 |
+
"iopub.execute_input": "2025-01-17T18:35:15.434902Z",
|
394 |
+
"iopub.status.busy": "2025-01-17T18:35:15.434668Z",
|
395 |
+
"iopub.status.idle": "2025-01-17T18:50:43.167167Z",
|
396 |
+
"shell.execute_reply": "2025-01-17T18:50:43.166720Z",
|
397 |
+
"shell.execute_reply.started": "2025-01-17T18:35:15.434880Z"
|
398 |
}
|
399 |
},
|
400 |
"outputs": [
|
|
|
402 |
"name": "stdout",
|
403 |
"output_type": "stream",
|
404 |
"text": [
|
405 |
+
"2025-01-17 10:35:20 Starting epoch 1.\n",
|
406 |
+
"2025-01-17 10:40:29 Epoch 1/3 done, Average Loss: 1.2876\n",
|
407 |
+
"2025-01-17 10:45:37 Epoch 2/3 done, Average Loss: 0.7289\n",
|
408 |
+
"2025-01-17 10:50:43 Epoch 3/3 done, Average Loss: 0.3990\n"
|
409 |
]
|
410 |
}
|
411 |
],
|
|
|
419 |
")"
|
420 |
]
|
421 |
},
|
422 |
+
{
|
423 |
+
"cell_type": "markdown",
|
424 |
+
"id": "982ba556-c589-4cbb-b392-614942a64ab3",
|
425 |
+
"metadata": {},
|
426 |
+
"source": [
|
427 |
+
"# Model to upload"
|
428 |
+
]
|
429 |
+
},
|
430 |
{
|
431 |
"cell_type": "code",
|
432 |
+
"execution_count": 6,
|
433 |
+
"id": "ac5f412c-a745-4327-9303-acf4c5b1efcd",
|
434 |
+
"metadata": {
|
435 |
+
"execution": {
|
436 |
+
"iopub.execute_input": "2025-01-17T18:19:11.590514Z",
|
437 |
+
"iopub.status.busy": "2025-01-17T18:19:11.589753Z",
|
438 |
+
"iopub.status.idle": "2025-01-17T18:26:45.645104Z",
|
439 |
+
"shell.execute_reply": "2025-01-17T18:26:45.644631Z",
|
440 |
+
"shell.execute_reply.started": "2025-01-17T18:19:11.590428Z"
|
441 |
+
}
|
442 |
+
},
|
443 |
+
"outputs": [
|
444 |
+
{
|
445 |
+
"name": "stdout",
|
446 |
+
"output_type": "stream",
|
447 |
+
"text": [
|
448 |
+
"2025-01-17 10:19:17 Starting epoch 1.\n",
|
449 |
+
"2025-01-17 10:21:47 Epoch 1/3 done, Average Loss: 1.2608\n",
|
450 |
+
"2025-01-17 10:24:16 Epoch 2/3 done, Average Loss: 0.7134\n",
|
451 |
+
"2025-01-17 10:26:45 Epoch 3/3 done, Average Loss: 0.3931\n"
|
452 |
+
]
|
453 |
+
}
|
454 |
+
],
|
455 |
+
"source": [
|
456 |
+
"model_final, tokenizer_final = run_training(\n",
|
457 |
+
" max_dataset_size='full',\n",
|
458 |
+
" bert_variety='bert-base-uncased',\n",
|
459 |
+
" max_length=128,\n",
|
460 |
+
" num_epochs=3,\n",
|
461 |
+
" batch_size=16,\n",
|
462 |
+
")"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "code",
|
467 |
+
"execution_count": 7,
|
468 |
"id": "e3b099c6-6b98-473b-8797-5032213b9fcb",
|
469 |
"metadata": {
|
470 |
"execution": {
|
471 |
+
"iopub.execute_input": "2025-01-17T18:26:45.646178Z",
|
472 |
+
"iopub.status.busy": "2025-01-17T18:26:45.646081Z",
|
473 |
+
"iopub.status.idle": "2025-01-17T18:26:45.722052Z",
|
474 |
+
"shell.execute_reply": "2025-01-17T18:26:45.721803Z",
|
475 |
+
"shell.execute_reply.started": "2025-01-17T18:26:45.646168Z"
|
476 |
}
|
477 |
},
|
478 |
"outputs": [
|
|
|
480 |
"name": "stdout",
|
481 |
"output_type": "stream",
|
482 |
"text": [
|
483 |
+
"2025-01-17 10:26:45 Predictions: tensor([0, 0, 3, 1, 2, 4, 6], device='mps:0')\n"
|
484 |
]
|
485 |
}
|
486 |
],
|
487 |
"source": [
|
488 |
+
"model_final.eval()\n",
|
489 |
"test_text = [\n",
|
490 |
" 'This was a great experience!', # 0_not_relevant\n",
|
491 |
" 'My favorite hike is Laguna de los Tres.', # 0_not_relevant\n",
|
|
|
495 |
" 'Solar panels emit bad vibes.', # 4_solutions_harmful_unnecessary\n",
|
496 |
" 'All those so-called scientists are Democrats.', # 6_proponents_biased\n",
|
497 |
"]\n",
|
498 |
+
"test_encoding = tokenizer_final(\n",
|
499 |
" test_text,\n",
|
500 |
" truncation=True,\n",
|
501 |
" padding=True,\n",
|
|
|
505 |
"with torch.no_grad():\n",
|
506 |
" test_input_ids = test_encoding['input_ids'].to(device)\n",
|
507 |
" test_attention_mask = test_encoding['attention_mask'].to(device)\n",
|
508 |
+
" outputs = model_final(test_input_ids, test_attention_mask)\n",
|
509 |
" predictions = torch.argmax(outputs, dim=1)\n",
|
510 |
" my_print(f'Predictions: {predictions}')"
|
511 |
]
|
512 |
},
|
513 |
{
|
514 |
"cell_type": "code",
|
515 |
+
"execution_count": 10,
|
516 |
"id": "befb94b5-88bf-40fc-8b26-cf373d1256e0",
|
517 |
"metadata": {
|
518 |
"execution": {
|
519 |
+
"iopub.execute_input": "2025-01-17T18:32:40.094019Z",
|
520 |
+
"iopub.status.busy": "2025-01-17T18:32:40.093429Z",
|
521 |
+
"iopub.status.idle": "2025-01-17T18:35:15.419578Z",
|
522 |
+
"shell.execute_reply": "2025-01-17T18:35:15.418848Z",
|
523 |
+
"shell.execute_reply.started": "2025-01-17T18:32:40.093970Z"
|
524 |
}
|
525 |
},
|
526 |
"outputs": [
|
527 |
{
|
528 |
+
"data": {
|
529 |
+
"application/vnd.jupyter.widget-view+json": {
|
530 |
+
"model_id": "7dd2d0eb08624920b345ca85712f0169",
|
531 |
+
"version_major": 2,
|
532 |
+
"version_minor": 0
|
533 |
+
},
|
534 |
+
"text/plain": [
|
535 |
+
"model.safetensors: 0%| | 0.00/438M [00:00<?, ?B/s]"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
"metadata": {},
|
539 |
+
"output_type": "display_data"
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"data": {
|
543 |
+
"text/plain": [
|
544 |
+
"CommitInfo(commit_url='https://huggingface.co/Nonnormalizable/frugal-ai-text-bert-base/commit/bd94aa1344798fcf671ddd5f8a7bd4f4dc0b20c4', commit_message='Push model using huggingface_hub.', commit_description='', oid='bd94aa1344798fcf671ddd5f8a7bd4f4dc0b20c4', pr_url=None, repo_url=RepoUrl('https://huggingface.co/Nonnormalizable/frugal-ai-text-bert-base', endpoint='https://huggingface.co', repo_type='model', repo_id='Nonnormalizable/frugal-ai-text-bert-base'), pr_revision=None, pr_num=None)"
|
545 |
+
]
|
546 |
+
},
|
547 |
+
"execution_count": 10,
|
548 |
+
"metadata": {},
|
549 |
+
"output_type": "execute_result"
|
550 |
}
|
551 |
],
|
552 |
"source": [
|
553 |
+
"model_final.push_to_hub('frugal-ai-text-bert-base')"
|
554 |
]
|
555 |
},
|
556 |
{
|
557 |
"cell_type": "code",
|
558 |
+
"execution_count": 9,
|
559 |
"id": "251ef9ee-8ba3-495f-8fe6-a93aa63168ce",
|
560 |
+
"metadata": {
|
561 |
+
"execution": {
|
562 |
+
"iopub.execute_input": "2025-01-17T18:31:37.682978Z",
|
563 |
+
"iopub.status.busy": "2025-01-17T18:31:37.682009Z",
|
564 |
+
"iopub.status.idle": "2025-01-17T18:31:39.578706Z",
|
565 |
+
"shell.execute_reply": "2025-01-17T18:31:39.577664Z",
|
566 |
+
"shell.execute_reply.started": "2025-01-17T18:31:37.682910Z"
|
567 |
+
}
|
568 |
+
},
|
569 |
+
"outputs": [
|
570 |
+
{
|
571 |
+
"data": {
|
572 |
+
"application/vnd.jupyter.widget-view+json": {
|
573 |
+
"model_id": "b62ae26d30534f8fa6057824124e9c95",
|
574 |
+
"version_major": 2,
|
575 |
+
"version_minor": 0
|
576 |
+
},
|
577 |
+
"text/plain": [
|
578 |
+
"README.md: 0%| | 0.00/320 [00:00<?, ?B/s]"
|
579 |
+
]
|
580 |
+
},
|
581 |
+
"metadata": {},
|
582 |
+
"output_type": "display_data"
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"data": {
|
586 |
+
"text/plain": [
|
587 |
+
"CommitInfo(commit_url='https://huggingface.co/Nonnormalizable/frugal-ai-text-bert-base/commit/9814436ad5f77cd8c607aa5dba9b67e7983e8ca7', commit_message='Upload tokenizer', commit_description='', oid='9814436ad5f77cd8c607aa5dba9b67e7983e8ca7', pr_url=None, repo_url=RepoUrl('https://huggingface.co/Nonnormalizable/frugal-ai-text-bert-base', endpoint='https://huggingface.co', repo_type='model', repo_id='Nonnormalizable/frugal-ai-text-bert-base'), pr_revision=None, pr_num=None)"
|
588 |
+
]
|
589 |
+
},
|
590 |
+
"execution_count": 9,
|
591 |
+
"metadata": {},
|
592 |
+
"output_type": "execute_result"
|
593 |
+
}
|
594 |
+
],
|
595 |
+
"source": [
|
596 |
+
"tokenizer_final.push_to_hub('frugal-ai-text-bert-base')"
|
597 |
+
]
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"cell_type": "code",
|
601 |
+
"execution_count": null,
|
602 |
+
"id": "863d3553-89a6-4188-a8d0-eaa0b6bccb6c",
|
603 |
"metadata": {},
|
604 |
"outputs": [],
|
605 |
"source": []
|
|
|
622 |
"nbconvert_exporter": "python",
|
623 |
"pygments_lexer": "ipython3",
|
624 |
"version": "3.13.1"
|
625 |
+
},
|
626 |
+
"widgets": {
|
627 |
+
"application/vnd.jupyter.widget-state+json": {
|
628 |
+
"state": {
|
629 |
+
"25776d7aede3476da6f33fc15fe300c8": {
|
630 |
+
"model_module": "@jupyter-widgets/controls",
|
631 |
+
"model_module_version": "2.0.0",
|
632 |
+
"model_name": "ProgressStyleModel",
|
633 |
+
"state": {
|
634 |
+
"description_width": ""
|
635 |
+
}
|
636 |
+
},
|
637 |
+
"3a03347251c644bd9b5f58bac49ba2b7": {
|
638 |
+
"model_module": "@jupyter-widgets/base",
|
639 |
+
"model_module_version": "2.0.0",
|
640 |
+
"model_name": "LayoutModel",
|
641 |
+
"state": {}
|
642 |
+
},
|
643 |
+
"3f7dd449d7f84420a836adb899c3b374": {
|
644 |
+
"model_module": "@jupyter-widgets/controls",
|
645 |
+
"model_module_version": "2.0.0",
|
646 |
+
"model_name": "HTMLStyleModel",
|
647 |
+
"state": {
|
648 |
+
"description_width": "",
|
649 |
+
"font_size": null,
|
650 |
+
"text_color": null
|
651 |
+
}
|
652 |
+
},
|
653 |
+
"47f3b8da36704934acf81f357a9da6c3": {
|
654 |
+
"model_module": "@jupyter-widgets/controls",
|
655 |
+
"model_module_version": "2.0.0",
|
656 |
+
"model_name": "FloatProgressModel",
|
657 |
+
"state": {
|
658 |
+
"bar_style": "success",
|
659 |
+
"layout": "IPY_MODEL_ae0e1835546645cd85915a133bd0b578",
|
660 |
+
"max": 437977072,
|
661 |
+
"style": "IPY_MODEL_25776d7aede3476da6f33fc15fe300c8",
|
662 |
+
"value": 437977072
|
663 |
+
}
|
664 |
+
},
|
665 |
+
"4eff913c8c554820b957c2192d04a8cd": {
|
666 |
+
"model_module": "@jupyter-widgets/controls",
|
667 |
+
"model_module_version": "2.0.0",
|
668 |
+
"model_name": "HTMLModel",
|
669 |
+
"state": {
|
670 |
+
"layout": "IPY_MODEL_54b8a0d455794f8881e6d9ceddcac787",
|
671 |
+
"style": "IPY_MODEL_3f7dd449d7f84420a836adb899c3b374",
|
672 |
+
"value": " 438M/438M [02:32<00:00, 3.02MB/s]"
|
673 |
+
}
|
674 |
+
},
|
675 |
+
"54b8a0d455794f8881e6d9ceddcac787": {
|
676 |
+
"model_module": "@jupyter-widgets/base",
|
677 |
+
"model_module_version": "2.0.0",
|
678 |
+
"model_name": "LayoutModel",
|
679 |
+
"state": {}
|
680 |
+
},
|
681 |
+
"5c96c3617819467d9fb70aa3b716106e": {
|
682 |
+
"model_module": "@jupyter-widgets/base",
|
683 |
+
"model_module_version": "2.0.0",
|
684 |
+
"model_name": "LayoutModel",
|
685 |
+
"state": {}
|
686 |
+
},
|
687 |
+
"62f9a837c04142b5a2fd66097be6fb6e": {
|
688 |
+
"model_module": "@jupyter-widgets/base",
|
689 |
+
"model_module_version": "2.0.0",
|
690 |
+
"model_name": "LayoutModel",
|
691 |
+
"state": {}
|
692 |
+
},
|
693 |
+
"68c0e93ffde14a40b3599dff15512174": {
|
694 |
+
"model_module": "@jupyter-widgets/controls",
|
695 |
+
"model_module_version": "2.0.0",
|
696 |
+
"model_name": "HTMLStyleModel",
|
697 |
+
"state": {
|
698 |
+
"description_width": "",
|
699 |
+
"font_size": null,
|
700 |
+
"text_color": null
|
701 |
+
}
|
702 |
+
},
|
703 |
+
"6f679b19e9824e1cac8545d7244ec83a": {
|
704 |
+
"model_module": "@jupyter-widgets/controls",
|
705 |
+
"model_module_version": "2.0.0",
|
706 |
+
"model_name": "FloatProgressModel",
|
707 |
+
"state": {
|
708 |
+
"bar_style": "success",
|
709 |
+
"layout": "IPY_MODEL_9785d5bb51544986b4c51b63a39d46cf",
|
710 |
+
"max": 320,
|
711 |
+
"style": "IPY_MODEL_88bc5db626a242af8879201d263d9eef",
|
712 |
+
"value": 320
|
713 |
+
}
|
714 |
+
},
|
715 |
+
"7dd2d0eb08624920b345ca85712f0169": {
|
716 |
+
"model_module": "@jupyter-widgets/controls",
|
717 |
+
"model_module_version": "2.0.0",
|
718 |
+
"model_name": "HBoxModel",
|
719 |
+
"state": {
|
720 |
+
"children": [
|
721 |
+
"IPY_MODEL_bdca6adbcf2347729287c1d2dc44fa2e",
|
722 |
+
"IPY_MODEL_47f3b8da36704934acf81f357a9da6c3",
|
723 |
+
"IPY_MODEL_4eff913c8c554820b957c2192d04a8cd"
|
724 |
+
],
|
725 |
+
"layout": "IPY_MODEL_3a03347251c644bd9b5f58bac49ba2b7"
|
726 |
+
}
|
727 |
+
},
|
728 |
+
"88bc5db626a242af8879201d263d9eef": {
|
729 |
+
"model_module": "@jupyter-widgets/controls",
|
730 |
+
"model_module_version": "2.0.0",
|
731 |
+
"model_name": "ProgressStyleModel",
|
732 |
+
"state": {
|
733 |
+
"description_width": ""
|
734 |
+
}
|
735 |
+
},
|
736 |
+
"9396575ac43b4832bb12e246801a2316": {
|
737 |
+
"model_module": "@jupyter-widgets/controls",
|
738 |
+
"model_module_version": "2.0.0",
|
739 |
+
"model_name": "HTMLModel",
|
740 |
+
"state": {
|
741 |
+
"layout": "IPY_MODEL_c16752a4cf734193accaae9835d55aab",
|
742 |
+
"style": "IPY_MODEL_c1b70a1ce9d149cf87169838a18f2e58",
|
743 |
+
"value": "README.md: 100%"
|
744 |
+
}
|
745 |
+
},
|
746 |
+
"9785d5bb51544986b4c51b63a39d46cf": {
|
747 |
+
"model_module": "@jupyter-widgets/base",
|
748 |
+
"model_module_version": "2.0.0",
|
749 |
+
"model_name": "LayoutModel",
|
750 |
+
"state": {}
|
751 |
+
},
|
752 |
+
"ae0e1835546645cd85915a133bd0b578": {
|
753 |
+
"model_module": "@jupyter-widgets/base",
|
754 |
+
"model_module_version": "2.0.0",
|
755 |
+
"model_name": "LayoutModel",
|
756 |
+
"state": {}
|
757 |
+
},
|
758 |
+
"b62ae26d30534f8fa6057824124e9c95": {
|
759 |
+
"model_module": "@jupyter-widgets/controls",
|
760 |
+
"model_module_version": "2.0.0",
|
761 |
+
"model_name": "HBoxModel",
|
762 |
+
"state": {
|
763 |
+
"children": [
|
764 |
+
"IPY_MODEL_9396575ac43b4832bb12e246801a2316",
|
765 |
+
"IPY_MODEL_6f679b19e9824e1cac8545d7244ec83a",
|
766 |
+
"IPY_MODEL_ce85ada4df3c41e9a9b35b7401cd1883"
|
767 |
+
],
|
768 |
+
"layout": "IPY_MODEL_62f9a837c04142b5a2fd66097be6fb6e"
|
769 |
+
}
|
770 |
+
},
|
771 |
+
"bdca6adbcf2347729287c1d2dc44fa2e": {
|
772 |
+
"model_module": "@jupyter-widgets/controls",
|
773 |
+
"model_module_version": "2.0.0",
|
774 |
+
"model_name": "HTMLModel",
|
775 |
+
"state": {
|
776 |
+
"layout": "IPY_MODEL_5c96c3617819467d9fb70aa3b716106e",
|
777 |
+
"style": "IPY_MODEL_c18dc3ed330d4d97a0c9d7dba32a9217",
|
778 |
+
"value": "model.safetensors: 100%"
|
779 |
+
}
|
780 |
+
},
|
781 |
+
"c16752a4cf734193accaae9835d55aab": {
|
782 |
+
"model_module": "@jupyter-widgets/base",
|
783 |
+
"model_module_version": "2.0.0",
|
784 |
+
"model_name": "LayoutModel",
|
785 |
+
"state": {}
|
786 |
+
},
|
787 |
+
"c18dc3ed330d4d97a0c9d7dba32a9217": {
|
788 |
+
"model_module": "@jupyter-widgets/controls",
|
789 |
+
"model_module_version": "2.0.0",
|
790 |
+
"model_name": "HTMLStyleModel",
|
791 |
+
"state": {
|
792 |
+
"description_width": "",
|
793 |
+
"font_size": null,
|
794 |
+
"text_color": null
|
795 |
+
}
|
796 |
+
},
|
797 |
+
"c1b70a1ce9d149cf87169838a18f2e58": {
|
798 |
+
"model_module": "@jupyter-widgets/controls",
|
799 |
+
"model_module_version": "2.0.0",
|
800 |
+
"model_name": "HTMLStyleModel",
|
801 |
+
"state": {
|
802 |
+
"description_width": "",
|
803 |
+
"font_size": null,
|
804 |
+
"text_color": null
|
805 |
+
}
|
806 |
+
},
|
807 |
+
"ce85ada4df3c41e9a9b35b7401cd1883": {
|
808 |
+
"model_module": "@jupyter-widgets/controls",
|
809 |
+
"model_module_version": "2.0.0",
|
810 |
+
"model_name": "HTMLModel",
|
811 |
+
"state": {
|
812 |
+
"layout": "IPY_MODEL_dae692ab00184ab190368530f21dcad9",
|
813 |
+
"style": "IPY_MODEL_68c0e93ffde14a40b3599dff15512174",
|
814 |
+
"value": " 320/320 [00:00<00:00, 21.4kB/s]"
|
815 |
+
}
|
816 |
+
},
|
817 |
+
"dae692ab00184ab190368530f21dcad9": {
|
818 |
+
"model_module": "@jupyter-widgets/base",
|
819 |
+
"model_module_version": "2.0.0",
|
820 |
+
"model_name": "LayoutModel",
|
821 |
+
"state": {}
|
822 |
+
}
|
823 |
+
},
|
824 |
+
"version_major": 2,
|
825 |
+
"version_minor": 0
|
826 |
+
}
|
827 |
}
|
828 |
},
|
829 |
"nbformat": 4,
|
tasks/text.py
CHANGED
@@ -3,15 +3,18 @@ from datetime import datetime
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
|
|
|
|
6 |
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
router = APIRouter()
|
11 |
|
12 |
-
DESCRIPTION = "
|
13 |
ROUTE = "/text"
|
14 |
|
|
|
15 |
def baseline_model(dataset_length: int):
|
16 |
# Make random predictions (placeholder for actual model inference)
|
17 |
#predictions = [random.randint(0, 7) for _ in range(dataset_length)]
|
@@ -22,6 +25,40 @@ def baseline_model(dataset_length: int):
|
|
22 |
return predictions
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
@router.post(ROUTE, tags=["Text Task"],
|
26 |
description=DESCRIPTION)
|
27 |
async def evaluate_text(request: TextEvaluationRequest):
|
@@ -67,8 +104,9 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
67 |
#--------------------------------------------------------------------------------------------
|
68 |
|
69 |
true_labels = test_dataset["label"]
|
70 |
-
predictions = baseline_model(len(true_labels))
|
71 |
-
|
|
|
72 |
#--------------------------------------------------------------------------------------------
|
73 |
# YOUR MODEL INFERENCE STOPS HERE
|
74 |
#--------------------------------------------------------------------------------------------
|
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
+
import torch
|
7 |
+
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
12 |
router = APIRouter()
|
13 |
|
14 |
+
DESCRIPTION = "bert base finetuned"
|
15 |
ROUTE = "/text"
|
16 |
|
17 |
+
|
18 |
def baseline_model(dataset_length: int):
|
19 |
# Make random predictions (placeholder for actual model inference)
|
20 |
#predictions = [random.randint(0, 7) for _ in range(dataset_length)]
|
|
|
25 |
return predictions
|
26 |
|
27 |
|
28 |
+
def bert_model(test_dataset):
|
29 |
+
print('Starting my code block.')
|
30 |
+
texts = test_dataset["quote"]
|
31 |
+
|
32 |
+
model_repo = 'Nonnormalizable/frugal-ai-text-bert-base'
|
33 |
+
config = AutoConfig.from_pretrained(model_repo)
|
34 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
36 |
+
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
device = torch.device('cuda')
|
39 |
+
else:
|
40 |
+
device = torch.device('cpu')
|
41 |
+
print('device:', device)
|
42 |
+
test_encoding = tokenizer(
|
43 |
+
texts,
|
44 |
+
truncation=True,
|
45 |
+
padding=True,
|
46 |
+
return_tensors='pt',
|
47 |
+
)
|
48 |
+
|
49 |
+
model.eval()
|
50 |
+
with torch.no_grad():
|
51 |
+
test_input_ids = test_encoding['input_ids'].to(device)
|
52 |
+
test_attention_mask = test_encoding['attention_mask'].to(device)
|
53 |
+
print('Starting model run.')
|
54 |
+
outputs = model(test_input_ids, test_attention_mask)
|
55 |
+
print('End of model run.')
|
56 |
+
predictions = torch.argmax(outputs.logits, dim=1)
|
57 |
+
|
58 |
+
print('End of my code block.')
|
59 |
+
return predictions
|
60 |
+
|
61 |
+
|
62 |
@router.post(ROUTE, tags=["Text Task"],
|
63 |
description=DESCRIPTION)
|
64 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
|
104 |
#--------------------------------------------------------------------------------------------
|
105 |
|
106 |
true_labels = test_dataset["label"]
|
107 |
+
#predictions = baseline_model(len(true_labels))
|
108 |
+
predictions = bert_model(test_dataset)
|
109 |
+
|
110 |
#--------------------------------------------------------------------------------------------
|
111 |
# YOUR MODEL INFERENCE STOPS HERE
|
112 |
#--------------------------------------------------------------------------------------------
|