Spaces:
Runtime error
Runtime error
File size: 1,317 Bytes
9b26701 8bd9e0b 9b26701 8bd9e0b 9b26701 8bd9e0b 9b26701 8bd9e0b 9b26701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
# app.py
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
# Load model and processor
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
def predict_handwriting(image):
"""
Function to process handwritten text image and return transcription
"""
try:
# Preprocess the image
image = image.convert("RGB")
# Prepare image pixel values
pixel_values = processor(image, return_tensors="pt").pixel_values
# Generate text
generated_ids = model.generate(pixel_values)
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Error processing image: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=predict_handwriting,
inputs=gr.Image(type="pil", label="Upload Handwritten Text Image"),
outputs=gr.Textbox(label="Transcription"),
title="Handwritten Text to Text Converter",
description="Upload a handwritten text image and get the transcribed text. Best results with clear, high-contrast images."
)
if __name__ == "__main__":
demo.launch() |