Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
+
model = AutoModelForTokenClassification.from_pretrained("microsoft/trocr-base-handwritten")
|
10 |
+
|
11 |
+
# Create OCR pipeline
|
12 |
+
ocr_pipeline = pipeline(
|
13 |
+
"image-to-text",
|
14 |
+
model=model,
|
15 |
+
tokenizer=tokenizer,
|
16 |
+
feature_extractor=tokenizer.init_feature_extractor()
|
17 |
+
)
|
18 |
+
|
19 |
+
def predict_handwriting(image):
|
20 |
+
"""
|
21 |
+
Function to process handwritten text image and return transcription
|
22 |
+
"""
|
23 |
+
try:
|
24 |
+
# Preprocess image
|
25 |
+
image = image.convert("RGB")
|
26 |
+
image = np.array(image)
|
27 |
+
|
28 |
+
# Run OCR
|
29 |
+
result = ocr_pipeline(image)
|
30 |
+
|
31 |
+
# Extract text from results
|
32 |
+
transcription = " ".join([word["value"] for word in result])
|
33 |
+
return transcription
|
34 |
+
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error processing image: {str(e)}"
|
37 |
+
|
38 |
+
# Create Gradio interface
|
39 |
+
demo = gr.Interface(
|
40 |
+
fn=predict_handwriting,
|
41 |
+
inputs=gr.Image(type="pil", label="Upload Handwritten Text Image"),
|
42 |
+
outputs=gr.Textbox(label="Transcription"),
|
43 |
+
title="Handwritten Text to Text Converter",
|
44 |
+
description="Upload a handwritten text image and get the transcribed text. Best results with clear, high-contrast images."
|
45 |
+
)
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
demo.launch()
|