Spaces:
Runtime error
Runtime error
File size: 1,453 Bytes
9b26701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# app.py
import gradio as gr
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
from PIL import Image
import numpy as np
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/trocr-base-handwritten")
model = AutoModelForTokenClassification.from_pretrained("microsoft/trocr-base-handwritten")
# Create OCR pipeline
ocr_pipeline = pipeline(
"image-to-text",
model=model,
tokenizer=tokenizer,
feature_extractor=tokenizer.init_feature_extractor()
)
def predict_handwriting(image):
"""
Function to process handwritten text image and return transcription
"""
try:
# Preprocess image
image = image.convert("RGB")
image = np.array(image)
# Run OCR
result = ocr_pipeline(image)
# Extract text from results
transcription = " ".join([word["value"] for word in result])
return transcription
except Exception as e:
return f"Error processing image: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=predict_handwriting,
inputs=gr.Image(type="pil", label="Upload Handwritten Text Image"),
outputs=gr.Textbox(label="Transcription"),
title="Handwritten Text to Text Converter",
description="Upload a handwritten text image and get the transcribed text. Best results with clear, high-contrast images."
)
if __name__ == "__main__":
demo.launch() |