Niharmahesh's picture
Update app.py
816b8af verified
import streamlit as st
import groq
from jobspy import scrape_jobs
import pandas as pd
import json
from typing import List, Dict
import numpy as np
import time
def make_clickable(url: str) -> str:
"""
Convert a URL to a clickable HTML link.
Args:
url (str): The URL to make clickable
Returns:
str: HTML anchor tag with the URL
"""
return f'<a href="{url}" target="_blank" style="color: #4e79a7;">Link</a>'
def convert_prompt_to_parameters(client, prompt: str) -> Dict[str, str]:
"""
Convert user input prompt to structured job search parameters using AI.
Args:
client: Groq AI client
prompt (str): User's job search description
Returns:
Dict[str, str]: Extracted search parameters with search_term and location
"""
system_prompt = """
You are a language decoder. Extract:
- search_term: job role/keywords (expand abbreviations)
- location: mentioned place or 'USA'
Return only: {"search_term": "term", "location": "location"}
"""
response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Extract from: {prompt}"}
],
max_tokens=1024,
model='llama3-8b-8192',
temperature=0.2
)
try:
return json.loads(response.choices[0].message.content)
except json.JSONDecodeError:
return {"search_term": prompt, "location": "USA"}
def analyze_resume(client, resume: str) -> str:
"""
Generate a comprehensive resume analysis using AI.
Args:
client: Groq AI client
resume (str): Full resume text
Returns:
str: Concise professional overview of the resume
"""
system_prompt = """Analyze resume comprehensively in 150 words:
1. Professional Profile Summary
2. Key Technical Skills
3. Educational Background
4. Core Professional Experience Highlights
5. Unique Strengths/Achievements
Return a concise, structured professional overview."""
response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": resume}
],
max_tokens=400,
model='llama3-8b-8192',
temperature=0.3
)
return response.choices[0].message.content
@st.cache_data(ttl=3600)
def get_job_data(search_params: Dict[str, str]) -> pd.DataFrame:
"""
Fetch job listings from multiple sources based on search parameters.
Args:
search_params (Dict[str, str]): Search parameters including term and location
Returns:
pd.DataFrame: Scraped job listings
"""
try:
return scrape_jobs(
site_name=["indeed", "linkedin", "zip_recruiter"],
search_term=search_params["search_term"],
location=search_params["location"],
results_wanted=60,
hours_old=24,
country_indeed='USA'
)
except Exception as e:
st.warning(f"Error in job scraping: {str(e)}")
return pd.DataFrame()
def analyze_job_batch(
client,
resume: str,
jobs_batch: List[Dict],
start_index: int,
retry_count: int = 0
) -> pd.DataFrame:
"""
Analyze a batch of jobs against the resume with retry logic.
Args:
client: Groq AI client
resume (str): Resume text
jobs_batch (List[Dict]): Batch of job listings
start_index (int): Starting index of the batch
retry_count (int, optional): Number of retry attempts. Defaults to 0.
Returns:
pd.DataFrame: Job match analysis results
"""
if retry_count >= 3:
return pd.DataFrame()
system_prompt = """Rate resume-job matches. Return only JSON array:
[{"job_index": number, "match_score": 0-100, "reason": "brief reason"}]"""
jobs_info = [
{
'index': idx + start_index,
'title': job['title'],
'desc': job.get('description', '')[:400],
}
for idx, job in enumerate(jobs_batch)
]
resume_summary = analyze_resume(client, resume)
analysis_prompt = f"Resume: {resume_summary}\nJobs: {json.dumps(jobs_info)}"
try:
response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": analysis_prompt}
],
max_tokens=1024,
model='llama3-70b-8192',
temperature=0.3
)
matches = json.loads(response.choices[0].message.content)
return pd.DataFrame(matches)
except Exception as e:
if retry_count < 3:
time.sleep(2)
return analyze_job_batch(client, resume, jobs_batch, start_index, retry_count + 1)
st.warning(f"Batch {start_index} failed after retries: {str(e)}")
return pd.DataFrame()
def analyze_jobs_in_batches(
client,
resume: str,
jobs_df: pd.DataFrame,
batch_size: int = 3
) -> pd.DataFrame:
"""
Process job listings in batches and analyze match with resume.
Args:
client: Groq AI client
resume (str): Resume text
jobs_df (pd.DataFrame): DataFrame of job listings
batch_size (int, optional): Number of jobs to process in each batch. Defaults to 3.
Returns:
pd.DataFrame: Sorted job matches by match score
"""
all_matches = []
jobs_dict = jobs_df.to_dict('records')
progress_bar = st.progress(0)
status_text = st.empty()
for i in range(0, len(jobs_dict), batch_size):
batch = jobs_dict[i:i + batch_size]
status_text.text(f"Processing batch {i//batch_size + 1} of {len(jobs_dict)//batch_size + 1}")
batch_matches = analyze_job_batch(client, resume, batch, i)
if not batch_matches.empty:
all_matches.append(batch_matches)
progress = min((i + batch_size) / len(jobs_dict), 1.0)
progress_bar.progress(progress)
time.sleep(1) # Rate limiting
progress_bar.empty()
status_text.empty()
if all_matches:
final_matches = pd.concat(all_matches, ignore_index=True)
return final_matches.sort_values('match_score', ascending=False)
return pd.DataFrame()
def main():
"""
Main Streamlit application entry point for Smart Job Search.
Handles user interface, job search, and AI-powered job matching.
"""
st.set_page_config(
layout="wide",
page_title="Multi Agent Job Search and Match",
initial_sidebar_state="collapsed"
)
# Custom CSS with reduced text sizes
st.markdown("""
<style>
.block-container {
padding-top: 1.5rem;
padding-bottom: 1.5rem;
max-width: 1200px;
}
.stButton>button {
background-color: #2563eb;
color: white;
border-radius: 0.375rem;
padding: 0.75rem 1.5rem;
border: none;
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
margin: 0.5rem;
min-width: 200px;
font-size: 0.875rem;
}
[data-testid="stFileUploader"] {
border: 2px dashed #e5e7eb;
border-radius: 0.5rem;
padding: 0.875rem;
min-height: 220px;
font-size: 0.875rem;
}
.stTextArea>div>div {
border-radius: 0.5rem;
min-height: 220px !important;
font-size: 0.875rem;
}
.stTextInput>div>div>input {
border-radius: 0.5rem;
font-size: 0.875rem;
}
.resume-html {
padding: 1.5rem;
max-width: 800px;
margin: 0 auto;
background: white;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
border-radius: 0.5rem;
font-size: 0.875rem;
}
h1 {font-size: 3rem !important; /* Adjust this value to increase the font size */
} h2 {font-size: 1.5rem !important; /* Adjust this value to increase the font size */
h3, h4, h5, h6 {
font-size: 80% !important;
}
p, li {
font-size: 0.875rem !important;
}
</style>
""", unsafe_allow_html=True)
# Header with smaller text
st.markdown("""
<h1 style='text-align: center; font-size: 2.5rem; font-weight: 800; margin-bottom: 0.875rem;'>
πŸš€ Multi Agent Job Search and Match
</h1>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
user_input = st.text_area(
"Describe the job you're looking for",
placeholder="E.g., 'Senior Python developer with React experience in San Francisco'",
height=150
)
with col2:
user_resume = st.text_area(
"Paste your resume here (for AI-powered matching)",
placeholder="Paste your resume for AI-powered job matching",
height=150
)
api_key = st.text_input(
"Enter your Groq API key",
type="password",
help="Your API key will be used to process the job search query"
)
# Add this CSS styling right after st.set_page_config()
if st.button("πŸ” Search Jobs", disabled=not api_key):
st.markdown("""
<style>
.stTabs [data-baseweb="tab-list"] {
display: flex;
justify-content: space-between;
width: 100%;
}
.stTabs [data-baseweb="tab"] {
flex: 1;
text-align: center;
}
</style>
""", unsafe_allow_html=True)
# Modify tab creation to use descriptive names
tab1, tab2, tab3 = st.tabs([
"πŸ” Job Listings",
"πŸ“„ Resume Summary",
"πŸ€– AI Job Matching"
])
if user_input and api_key:
try:
client = groq.Client(api_key=api_key)
with st.spinner("Processing search parameters..."):
processed_params = convert_prompt_to_parameters(client, user_input)
with st.spinner("Searching for jobs..."):
jobs_data = get_job_data(processed_params)
if not jobs_data.empty:
data = pd.DataFrame(jobs_data)
data = data[data['description'].notna()].reset_index(drop=True)
with tab1:
st.success(f"Found {len(data)} jobs!")
display_df = data[['site', 'job_url', 'title', 'company', 'location', 'job_type', 'date_posted']]
display_df['job_url'] = display_df['job_url'].apply(make_clickable)
st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
if user_resume:
with tab2:
st.info("Analyzing resume summary...")
resume_summary = analyze_resume(client, user_resume)
st.success("Resume summary:")
st.write(resume_summary)
with tab3:
st.info("Analyzing job matches in small batches...")
matches_df = analyze_jobs_in_batches(client, resume_summary, data, batch_size=3)
if not matches_df.empty:
matched_jobs = data.iloc[matches_df['job_index']].copy()
matched_jobs['match_score'] = matches_df['match_score']
matched_jobs['match_reason'] = matches_df['reason']
st.success(f"Found {len(matched_jobs)} recommended matches!")
display_cols = ['site', 'job_url', 'title', 'company', 'location', 'match_score', 'match_reason']
display_df = matched_jobs[display_cols].sort_values('match_score', ascending=False)
display_df['job_url'] = display_df['job_url'].apply(make_clickable)
st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
else:
st.warning("Could not process job matches. Please try again.")
else:
st.warning("No jobs found with the given parameters.")
except Exception as e:
st.error(f"Error: {str(e)}")
elif not api_key:
st.warning("Please enter your API key.")
else:
st.warning("Please enter a job description.")
if __name__ == "__main__":
main()