|
import streamlit as st |
|
import groq |
|
from jobspy import scrape_jobs |
|
import pandas as pd |
|
import json |
|
from typing import List, Dict |
|
import numpy as np |
|
import time |
|
|
|
def make_clickable(url: str) -> str: |
|
""" |
|
Convert a URL to a clickable HTML link. |
|
|
|
Args: |
|
url (str): The URL to make clickable |
|
|
|
Returns: |
|
str: HTML anchor tag with the URL |
|
""" |
|
return f'<a href="{url}" target="_blank" style="color: #4e79a7;">Link</a>' |
|
|
|
def convert_prompt_to_parameters(client, prompt: str) -> Dict[str, str]: |
|
""" |
|
Convert user input prompt to structured job search parameters using AI. |
|
|
|
Args: |
|
client: Groq AI client |
|
prompt (str): User's job search description |
|
|
|
Returns: |
|
Dict[str, str]: Extracted search parameters with search_term and location |
|
""" |
|
system_prompt = """ |
|
You are a language decoder. Extract: |
|
- search_term: job role/keywords (expand abbreviations) |
|
- location: mentioned place or 'USA' |
|
Return only: {"search_term": "term", "location": "location"} |
|
""" |
|
|
|
response = client.chat.completions.create( |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": f"Extract from: {prompt}"} |
|
], |
|
max_tokens=1024, |
|
model='llama3-8b-8192', |
|
temperature=0.2 |
|
) |
|
|
|
try: |
|
return json.loads(response.choices[0].message.content) |
|
except json.JSONDecodeError: |
|
return {"search_term": prompt, "location": "USA"} |
|
|
|
def analyze_resume(client, resume: str) -> str: |
|
""" |
|
Generate a comprehensive resume analysis using AI. |
|
|
|
Args: |
|
client: Groq AI client |
|
resume (str): Full resume text |
|
|
|
Returns: |
|
str: Concise professional overview of the resume |
|
""" |
|
system_prompt = """Analyze resume comprehensively in 150 words: |
|
1. Professional Profile Summary |
|
2. Key Technical Skills |
|
3. Educational Background |
|
4. Core Professional Experience Highlights |
|
5. Unique Strengths/Achievements |
|
Return a concise, structured professional overview.""" |
|
|
|
response = client.chat.completions.create( |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": resume} |
|
], |
|
max_tokens=400, |
|
model='llama3-8b-8192', |
|
temperature=0.3 |
|
) |
|
|
|
return response.choices[0].message.content |
|
|
|
@st.cache_data(ttl=3600) |
|
def get_job_data(search_params: Dict[str, str]) -> pd.DataFrame: |
|
""" |
|
Fetch job listings from multiple sources based on search parameters. |
|
|
|
Args: |
|
search_params (Dict[str, str]): Search parameters including term and location |
|
|
|
Returns: |
|
pd.DataFrame: Scraped job listings |
|
""" |
|
try: |
|
return scrape_jobs( |
|
site_name=["indeed", "linkedin", "zip_recruiter"], |
|
search_term=search_params["search_term"], |
|
location=search_params["location"], |
|
results_wanted=60, |
|
hours_old=24, |
|
country_indeed='USA' |
|
) |
|
except Exception as e: |
|
st.warning(f"Error in job scraping: {str(e)}") |
|
return pd.DataFrame() |
|
|
|
def analyze_job_batch( |
|
client, |
|
resume: str, |
|
jobs_batch: List[Dict], |
|
start_index: int, |
|
retry_count: int = 0 |
|
) -> pd.DataFrame: |
|
""" |
|
Analyze a batch of jobs against the resume with retry logic. |
|
|
|
Args: |
|
client: Groq AI client |
|
resume (str): Resume text |
|
jobs_batch (List[Dict]): Batch of job listings |
|
start_index (int): Starting index of the batch |
|
retry_count (int, optional): Number of retry attempts. Defaults to 0. |
|
|
|
Returns: |
|
pd.DataFrame: Job match analysis results |
|
""" |
|
if retry_count >= 3: |
|
return pd.DataFrame() |
|
|
|
system_prompt = """Rate resume-job matches. Return only JSON array: |
|
[{"job_index": number, "match_score": 0-100, "reason": "brief reason"}]""" |
|
|
|
jobs_info = [ |
|
{ |
|
'index': idx + start_index, |
|
'title': job['title'], |
|
'desc': job.get('description', '')[:400], |
|
} |
|
for idx, job in enumerate(jobs_batch) |
|
] |
|
|
|
resume_summary = analyze_resume(client, resume) |
|
|
|
analysis_prompt = f"Resume: {resume_summary}\nJobs: {json.dumps(jobs_info)}" |
|
|
|
try: |
|
response = client.chat.completions.create( |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": analysis_prompt} |
|
], |
|
max_tokens=1024, |
|
model='llama3-70b-8192', |
|
temperature=0.3 |
|
) |
|
|
|
matches = json.loads(response.choices[0].message.content) |
|
return pd.DataFrame(matches) |
|
except Exception as e: |
|
if retry_count < 3: |
|
time.sleep(2) |
|
return analyze_job_batch(client, resume, jobs_batch, start_index, retry_count + 1) |
|
st.warning(f"Batch {start_index} failed after retries: {str(e)}") |
|
return pd.DataFrame() |
|
|
|
def analyze_jobs_in_batches( |
|
client, |
|
resume: str, |
|
jobs_df: pd.DataFrame, |
|
batch_size: int = 3 |
|
) -> pd.DataFrame: |
|
""" |
|
Process job listings in batches and analyze match with resume. |
|
|
|
Args: |
|
client: Groq AI client |
|
resume (str): Resume text |
|
jobs_df (pd.DataFrame): DataFrame of job listings |
|
batch_size (int, optional): Number of jobs to process in each batch. Defaults to 3. |
|
|
|
Returns: |
|
pd.DataFrame: Sorted job matches by match score |
|
""" |
|
all_matches = [] |
|
jobs_dict = jobs_df.to_dict('records') |
|
progress_bar = st.progress(0) |
|
status_text = st.empty() |
|
|
|
for i in range(0, len(jobs_dict), batch_size): |
|
batch = jobs_dict[i:i + batch_size] |
|
status_text.text(f"Processing batch {i//batch_size + 1} of {len(jobs_dict)//batch_size + 1}") |
|
|
|
batch_matches = analyze_job_batch(client, resume, batch, i) |
|
if not batch_matches.empty: |
|
all_matches.append(batch_matches) |
|
|
|
progress = min((i + batch_size) / len(jobs_dict), 1.0) |
|
progress_bar.progress(progress) |
|
time.sleep(1) |
|
|
|
progress_bar.empty() |
|
status_text.empty() |
|
|
|
if all_matches: |
|
final_matches = pd.concat(all_matches, ignore_index=True) |
|
return final_matches.sort_values('match_score', ascending=False) |
|
return pd.DataFrame() |
|
|
|
def main(): |
|
""" |
|
Main Streamlit application entry point for Smart Job Search. |
|
Handles user interface, job search, and AI-powered job matching. |
|
""" |
|
st.set_page_config( |
|
layout="wide", |
|
page_title="Multi Agent Job Search and Match", |
|
initial_sidebar_state="collapsed" |
|
) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.block-container { |
|
padding-top: 1.5rem; |
|
padding-bottom: 1.5rem; |
|
max-width: 1200px; |
|
} |
|
.stButton>button { |
|
background-color: #2563eb; |
|
color: white; |
|
border-radius: 0.375rem; |
|
padding: 0.75rem 1.5rem; |
|
border: none; |
|
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05); |
|
margin: 0.5rem; |
|
min-width: 200px; |
|
font-size: 0.875rem; |
|
} |
|
[data-testid="stFileUploader"] { |
|
border: 2px dashed #e5e7eb; |
|
border-radius: 0.5rem; |
|
padding: 0.875rem; |
|
min-height: 220px; |
|
font-size: 0.875rem; |
|
} |
|
.stTextArea>div>div { |
|
border-radius: 0.5rem; |
|
min-height: 220px !important; |
|
font-size: 0.875rem; |
|
} |
|
.stTextInput>div>div>input { |
|
border-radius: 0.5rem; |
|
font-size: 0.875rem; |
|
} |
|
.resume-html { |
|
padding: 1.5rem; |
|
max-width: 800px; |
|
margin: 0 auto; |
|
background: white; |
|
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); |
|
border-radius: 0.5rem; |
|
font-size: 0.875rem; |
|
} |
|
h1 {font-size: 3rem !important; /* Adjust this value to increase the font size */ |
|
} h2 {font-size: 1.5rem !important; /* Adjust this value to increase the font size */ |
|
h3, h4, h5, h6 { |
|
font-size: 80% !important; |
|
} |
|
p, li { |
|
font-size: 0.875rem !important; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(""" |
|
<h1 style='text-align: center; font-size: 2.5rem; font-weight: 800; margin-bottom: 0.875rem;'> |
|
π Multi Agent Job Search and Match |
|
</h1> |
|
""", unsafe_allow_html=True) |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
user_input = st.text_area( |
|
"Describe the job you're looking for", |
|
placeholder="E.g., 'Senior Python developer with React experience in San Francisco'", |
|
height=150 |
|
) |
|
|
|
with col2: |
|
user_resume = st.text_area( |
|
"Paste your resume here (for AI-powered matching)", |
|
placeholder="Paste your resume for AI-powered job matching", |
|
height=150 |
|
) |
|
|
|
api_key = st.text_input( |
|
"Enter your Groq API key", |
|
type="password", |
|
help="Your API key will be used to process the job search query" |
|
) |
|
|
|
|
|
|
|
|
|
if st.button("π Search Jobs", disabled=not api_key): |
|
st.markdown(""" |
|
<style> |
|
.stTabs [data-baseweb="tab-list"] { |
|
display: flex; |
|
justify-content: space-between; |
|
width: 100%; |
|
} |
|
.stTabs [data-baseweb="tab"] { |
|
flex: 1; |
|
text-align: center; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs([ |
|
"π Job Listings", |
|
"π Resume Summary", |
|
"π€ AI Job Matching" |
|
]) |
|
if user_input and api_key: |
|
try: |
|
client = groq.Client(api_key=api_key) |
|
|
|
with st.spinner("Processing search parameters..."): |
|
processed_params = convert_prompt_to_parameters(client, user_input) |
|
|
|
with st.spinner("Searching for jobs..."): |
|
jobs_data = get_job_data(processed_params) |
|
|
|
if not jobs_data.empty: |
|
data = pd.DataFrame(jobs_data) |
|
data = data[data['description'].notna()].reset_index(drop=True) |
|
|
|
with tab1: |
|
st.success(f"Found {len(data)} jobs!") |
|
display_df = data[['site', 'job_url', 'title', 'company', 'location', 'job_type', 'date_posted']] |
|
display_df['job_url'] = display_df['job_url'].apply(make_clickable) |
|
st.write(display_df.to_html(escape=False), unsafe_allow_html=True) |
|
|
|
if user_resume: |
|
with tab2: |
|
st.info("Analyzing resume summary...") |
|
resume_summary = analyze_resume(client, user_resume) |
|
st.success("Resume summary:") |
|
st.write(resume_summary) |
|
|
|
with tab3: |
|
st.info("Analyzing job matches in small batches...") |
|
matches_df = analyze_jobs_in_batches(client, resume_summary, data, batch_size=3) |
|
|
|
if not matches_df.empty: |
|
matched_jobs = data.iloc[matches_df['job_index']].copy() |
|
matched_jobs['match_score'] = matches_df['match_score'] |
|
matched_jobs['match_reason'] = matches_df['reason'] |
|
|
|
st.success(f"Found {len(matched_jobs)} recommended matches!") |
|
display_cols = ['site', 'job_url', 'title', 'company', 'location', 'match_score', 'match_reason'] |
|
display_df = matched_jobs[display_cols].sort_values('match_score', ascending=False) |
|
display_df['job_url'] = display_df['job_url'].apply(make_clickable) |
|
st.write(display_df.to_html(escape=False), unsafe_allow_html=True) |
|
else: |
|
st.warning("Could not process job matches. Please try again.") |
|
else: |
|
st.warning("No jobs found with the given parameters.") |
|
|
|
except Exception as e: |
|
st.error(f"Error: {str(e)}") |
|
elif not api_key: |
|
st.warning("Please enter your API key.") |
|
else: |
|
st.warning("Please enter a job description.") |
|
|
|
if __name__ == "__main__": |
|
main() |