File size: 13,219 Bytes
42f62ee c79a004 42f62ee c79a004 42f62ee 816b8af 42f62ee a13b3e6 42f62ee d9db828 42f62ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import streamlit as st
import groq
from jobspy import scrape_jobs
import pandas as pd
import json
from typing import List, Dict
import numpy as np
import time
def make_clickable(url: str) -> str:
"""
Convert a URL to a clickable HTML link.
Args:
url (str): The URL to make clickable
Returns:
str: HTML anchor tag with the URL
"""
return f'<a href="{url}" target="_blank" style="color: #4e79a7;">Link</a>'
def convert_prompt_to_parameters(client, prompt: str) -> Dict[str, str]:
"""
Convert user input prompt to structured job search parameters using AI.
Args:
client: Groq AI client
prompt (str): User's job search description
Returns:
Dict[str, str]: Extracted search parameters with search_term and location
"""
system_prompt = """
You are a language decoder. Extract:
- search_term: job role/keywords (expand abbreviations)
- location: mentioned place or 'USA'
Return only: {"search_term": "term", "location": "location"}
"""
response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Extract from: {prompt}"}
],
max_tokens=1024,
model='llama3-8b-8192',
temperature=0.2
)
try:
return json.loads(response.choices[0].message.content)
except json.JSONDecodeError:
return {"search_term": prompt, "location": "USA"}
def analyze_resume(client, resume: str) -> str:
"""
Generate a comprehensive resume analysis using AI.
Args:
client: Groq AI client
resume (str): Full resume text
Returns:
str: Concise professional overview of the resume
"""
system_prompt = """Analyze resume comprehensively in 150 words:
1. Professional Profile Summary
2. Key Technical Skills
3. Educational Background
4. Core Professional Experience Highlights
5. Unique Strengths/Achievements
Return a concise, structured professional overview."""
response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": resume}
],
max_tokens=400,
model='llama3-8b-8192',
temperature=0.3
)
return response.choices[0].message.content
@st.cache_data(ttl=3600)
def get_job_data(search_params: Dict[str, str]) -> pd.DataFrame:
"""
Fetch job listings from multiple sources based on search parameters.
Args:
search_params (Dict[str, str]): Search parameters including term and location
Returns:
pd.DataFrame: Scraped job listings
"""
try:
return scrape_jobs(
site_name=["indeed", "linkedin", "zip_recruiter"],
search_term=search_params["search_term"],
location=search_params["location"],
results_wanted=60,
hours_old=24,
country_indeed='USA'
)
except Exception as e:
st.warning(f"Error in job scraping: {str(e)}")
return pd.DataFrame()
def analyze_job_batch(
client,
resume: str,
jobs_batch: List[Dict],
start_index: int,
retry_count: int = 0
) -> pd.DataFrame:
"""
Analyze a batch of jobs against the resume with retry logic.
Args:
client: Groq AI client
resume (str): Resume text
jobs_batch (List[Dict]): Batch of job listings
start_index (int): Starting index of the batch
retry_count (int, optional): Number of retry attempts. Defaults to 0.
Returns:
pd.DataFrame: Job match analysis results
"""
if retry_count >= 3:
return pd.DataFrame()
system_prompt = """Rate resume-job matches. Return only JSON array:
[{"job_index": number, "match_score": 0-100, "reason": "brief reason"}]"""
jobs_info = [
{
'index': idx + start_index,
'title': job['title'],
'desc': job.get('description', '')[:400],
}
for idx, job in enumerate(jobs_batch)
]
resume_summary = analyze_resume(client, resume)
analysis_prompt = f"Resume: {resume_summary}\nJobs: {json.dumps(jobs_info)}"
try:
response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": analysis_prompt}
],
max_tokens=1024,
model='llama3-70b-8192',
temperature=0.3
)
matches = json.loads(response.choices[0].message.content)
return pd.DataFrame(matches)
except Exception as e:
if retry_count < 3:
time.sleep(2)
return analyze_job_batch(client, resume, jobs_batch, start_index, retry_count + 1)
st.warning(f"Batch {start_index} failed after retries: {str(e)}")
return pd.DataFrame()
def analyze_jobs_in_batches(
client,
resume: str,
jobs_df: pd.DataFrame,
batch_size: int = 3
) -> pd.DataFrame:
"""
Process job listings in batches and analyze match with resume.
Args:
client: Groq AI client
resume (str): Resume text
jobs_df (pd.DataFrame): DataFrame of job listings
batch_size (int, optional): Number of jobs to process in each batch. Defaults to 3.
Returns:
pd.DataFrame: Sorted job matches by match score
"""
all_matches = []
jobs_dict = jobs_df.to_dict('records')
progress_bar = st.progress(0)
status_text = st.empty()
for i in range(0, len(jobs_dict), batch_size):
batch = jobs_dict[i:i + batch_size]
status_text.text(f"Processing batch {i//batch_size + 1} of {len(jobs_dict)//batch_size + 1}")
batch_matches = analyze_job_batch(client, resume, batch, i)
if not batch_matches.empty:
all_matches.append(batch_matches)
progress = min((i + batch_size) / len(jobs_dict), 1.0)
progress_bar.progress(progress)
time.sleep(1) # Rate limiting
progress_bar.empty()
status_text.empty()
if all_matches:
final_matches = pd.concat(all_matches, ignore_index=True)
return final_matches.sort_values('match_score', ascending=False)
return pd.DataFrame()
def main():
"""
Main Streamlit application entry point for Smart Job Search.
Handles user interface, job search, and AI-powered job matching.
"""
st.set_page_config(
layout="wide",
page_title="Multi Agent Job Search and Match",
initial_sidebar_state="collapsed"
)
# Custom CSS with reduced text sizes
st.markdown("""
<style>
.block-container {
padding-top: 1.5rem;
padding-bottom: 1.5rem;
max-width: 1200px;
}
.stButton>button {
background-color: #2563eb;
color: white;
border-radius: 0.375rem;
padding: 0.75rem 1.5rem;
border: none;
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
margin: 0.5rem;
min-width: 200px;
font-size: 0.875rem;
}
[data-testid="stFileUploader"] {
border: 2px dashed #e5e7eb;
border-radius: 0.5rem;
padding: 0.875rem;
min-height: 220px;
font-size: 0.875rem;
}
.stTextArea>div>div {
border-radius: 0.5rem;
min-height: 220px !important;
font-size: 0.875rem;
}
.stTextInput>div>div>input {
border-radius: 0.5rem;
font-size: 0.875rem;
}
.resume-html {
padding: 1.5rem;
max-width: 800px;
margin: 0 auto;
background: white;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
border-radius: 0.5rem;
font-size: 0.875rem;
}
h1 {font-size: 3rem !important; /* Adjust this value to increase the font size */
} h2 {font-size: 1.5rem !important; /* Adjust this value to increase the font size */
h3, h4, h5, h6 {
font-size: 80% !important;
}
p, li {
font-size: 0.875rem !important;
}
</style>
""", unsafe_allow_html=True)
# Header with smaller text
st.markdown("""
<h1 style='text-align: center; font-size: 2.5rem; font-weight: 800; margin-bottom: 0.875rem;'>
π Multi Agent Job Search and Match
</h1>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
user_input = st.text_area(
"Describe the job you're looking for",
placeholder="E.g., 'Senior Python developer with React experience in San Francisco'",
height=150
)
with col2:
user_resume = st.text_area(
"Paste your resume here (for AI-powered matching)",
placeholder="Paste your resume for AI-powered job matching",
height=150
)
api_key = st.text_input(
"Enter your Groq API key",
type="password",
help="Your API key will be used to process the job search query"
)
# Add this CSS styling right after st.set_page_config()
if st.button("π Search Jobs", disabled=not api_key):
st.markdown("""
<style>
.stTabs [data-baseweb="tab-list"] {
display: flex;
justify-content: space-between;
width: 100%;
}
.stTabs [data-baseweb="tab"] {
flex: 1;
text-align: center;
}
</style>
""", unsafe_allow_html=True)
# Modify tab creation to use descriptive names
tab1, tab2, tab3 = st.tabs([
"π Job Listings",
"π Resume Summary",
"π€ AI Job Matching"
])
if user_input and api_key:
try:
client = groq.Client(api_key=api_key)
with st.spinner("Processing search parameters..."):
processed_params = convert_prompt_to_parameters(client, user_input)
with st.spinner("Searching for jobs..."):
jobs_data = get_job_data(processed_params)
if not jobs_data.empty:
data = pd.DataFrame(jobs_data)
data = data[data['description'].notna()].reset_index(drop=True)
with tab1:
st.success(f"Found {len(data)} jobs!")
display_df = data[['site', 'job_url', 'title', 'company', 'location', 'job_type', 'date_posted']]
display_df['job_url'] = display_df['job_url'].apply(make_clickable)
st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
if user_resume:
with tab2:
st.info("Analyzing resume summary...")
resume_summary = analyze_resume(client, user_resume)
st.success("Resume summary:")
st.write(resume_summary)
with tab3:
st.info("Analyzing job matches in small batches...")
matches_df = analyze_jobs_in_batches(client, resume_summary, data, batch_size=3)
if not matches_df.empty:
matched_jobs = data.iloc[matches_df['job_index']].copy()
matched_jobs['match_score'] = matches_df['match_score']
matched_jobs['match_reason'] = matches_df['reason']
st.success(f"Found {len(matched_jobs)} recommended matches!")
display_cols = ['site', 'job_url', 'title', 'company', 'location', 'match_score', 'match_reason']
display_df = matched_jobs[display_cols].sort_values('match_score', ascending=False)
display_df['job_url'] = display_df['job_url'].apply(make_clickable)
st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
else:
st.warning("Could not process job matches. Please try again.")
else:
st.warning("No jobs found with the given parameters.")
except Exception as e:
st.error(f"Error: {str(e)}")
elif not api_key:
st.warning("Please enter your API key.")
else:
st.warning("Please enter a job description.")
if __name__ == "__main__":
main() |