Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import groq
|
3 |
+
from jobspy import scrape_jobs
|
4 |
+
import pandas as pd
|
5 |
+
import json
|
6 |
+
from typing import List, Dict
|
7 |
+
import numpy as np
|
8 |
+
import time
|
9 |
+
|
10 |
+
def make_clickable(url: str) -> str:
|
11 |
+
"""
|
12 |
+
Convert a URL to a clickable HTML link.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
url (str): The URL to make clickable
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
str: HTML anchor tag with the URL
|
19 |
+
"""
|
20 |
+
return f'<a href="{url}" target="_blank" style="color: #4e79a7;">Link</a>'
|
21 |
+
|
22 |
+
def convert_prompt_to_parameters(client, prompt: str) -> Dict[str, str]:
|
23 |
+
"""
|
24 |
+
Convert user input prompt to structured job search parameters using AI.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
client: Groq AI client
|
28 |
+
prompt (str): User's job search description
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
Dict[str, str]: Extracted search parameters with search_term and location
|
32 |
+
"""
|
33 |
+
system_prompt = """
|
34 |
+
You are a language decoder. Extract:
|
35 |
+
- search_term: job role/keywords (expand abbreviations)
|
36 |
+
- location: mentioned place or 'USA'
|
37 |
+
Return only: {"search_term": "term", "location": "location"}
|
38 |
+
"""
|
39 |
+
|
40 |
+
response = client.chat.completions.create(
|
41 |
+
messages=[
|
42 |
+
{"role": "system", "content": system_prompt},
|
43 |
+
{"role": "user", "content": f"Extract from: {prompt}"}
|
44 |
+
],
|
45 |
+
max_tokens=1024,
|
46 |
+
model='llama3-70b-8192',
|
47 |
+
temperature=0.2
|
48 |
+
)
|
49 |
+
|
50 |
+
try:
|
51 |
+
return json.loads(response.choices[0].message.content)
|
52 |
+
except json.JSONDecodeError:
|
53 |
+
return {"search_term": prompt, "location": "USA"}
|
54 |
+
|
55 |
+
def analyze_resume(client, resume: str) -> str:
|
56 |
+
"""
|
57 |
+
Generate a comprehensive resume analysis using AI.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
client: Groq AI client
|
61 |
+
resume (str): Full resume text
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
str: Concise professional overview of the resume
|
65 |
+
"""
|
66 |
+
system_prompt = """Analyze resume comprehensively in 150 words:
|
67 |
+
1. Professional Profile Summary
|
68 |
+
2. Key Technical Skills
|
69 |
+
3. Educational Background
|
70 |
+
4. Core Professional Experience Highlights
|
71 |
+
5. Unique Strengths/Achievements
|
72 |
+
Return a concise, structured professional overview."""
|
73 |
+
|
74 |
+
response = client.chat.completions.create(
|
75 |
+
messages=[
|
76 |
+
{"role": "system", "content": system_prompt},
|
77 |
+
{"role": "user", "content": resume}
|
78 |
+
],
|
79 |
+
max_tokens=400,
|
80 |
+
model='llama3-70b-8192',
|
81 |
+
temperature=0.3
|
82 |
+
)
|
83 |
+
|
84 |
+
return response.choices[0].message.content
|
85 |
+
|
86 |
+
@st.cache_data(ttl=3600)
|
87 |
+
def get_job_data(search_params: Dict[str, str]) -> pd.DataFrame:
|
88 |
+
"""
|
89 |
+
Fetch job listings from multiple sources based on search parameters.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
search_params (Dict[str, str]): Search parameters including term and location
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
pd.DataFrame: Scraped job listings
|
96 |
+
"""
|
97 |
+
try:
|
98 |
+
return scrape_jobs(
|
99 |
+
site_name=["indeed", "linkedin", "zip_recruiter"],
|
100 |
+
search_term=search_params["search_term"],
|
101 |
+
location=search_params["location"],
|
102 |
+
results_wanted=60,
|
103 |
+
hours_old=24,
|
104 |
+
country_indeed='USA'
|
105 |
+
)
|
106 |
+
except Exception as e:
|
107 |
+
st.warning(f"Error in job scraping: {str(e)}")
|
108 |
+
return pd.DataFrame()
|
109 |
+
|
110 |
+
def analyze_job_batch(
|
111 |
+
client,
|
112 |
+
resume: str,
|
113 |
+
jobs_batch: List[Dict],
|
114 |
+
start_index: int,
|
115 |
+
retry_count: int = 0
|
116 |
+
) -> pd.DataFrame:
|
117 |
+
"""
|
118 |
+
Analyze a batch of jobs against the resume with retry logic.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
client: Groq AI client
|
122 |
+
resume (str): Resume text
|
123 |
+
jobs_batch (List[Dict]): Batch of job listings
|
124 |
+
start_index (int): Starting index of the batch
|
125 |
+
retry_count (int, optional): Number of retry attempts. Defaults to 0.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
pd.DataFrame: Job match analysis results
|
129 |
+
"""
|
130 |
+
if retry_count >= 3:
|
131 |
+
return pd.DataFrame()
|
132 |
+
|
133 |
+
system_prompt = """Rate resume-job matches. Return only JSON array:
|
134 |
+
[{"job_index": number, "match_score": 0-100, "reason": "brief reason"}]"""
|
135 |
+
|
136 |
+
jobs_info = [
|
137 |
+
{
|
138 |
+
'index': idx + start_index,
|
139 |
+
'title': job['title'],
|
140 |
+
'desc': job.get('description', '')[:400],
|
141 |
+
}
|
142 |
+
for idx, job in enumerate(jobs_batch)
|
143 |
+
]
|
144 |
+
|
145 |
+
resume_summary = analyze_resume(client, resume)
|
146 |
+
|
147 |
+
analysis_prompt = f"Resume: {resume_summary}\nJobs: {json.dumps(jobs_info)}"
|
148 |
+
|
149 |
+
try:
|
150 |
+
response = client.chat.completions.create(
|
151 |
+
messages=[
|
152 |
+
{"role": "system", "content": system_prompt},
|
153 |
+
{"role": "user", "content": analysis_prompt}
|
154 |
+
],
|
155 |
+
max_tokens=1024,
|
156 |
+
model='llama3-70b-8192',
|
157 |
+
temperature=0.3
|
158 |
+
)
|
159 |
+
|
160 |
+
matches = json.loads(response.choices[0].message.content)
|
161 |
+
return pd.DataFrame(matches)
|
162 |
+
except Exception as e:
|
163 |
+
if retry_count < 3:
|
164 |
+
time.sleep(2)
|
165 |
+
return analyze_job_batch(client, resume, jobs_batch, start_index, retry_count + 1)
|
166 |
+
st.warning(f"Batch {start_index} failed after retries: {str(e)}")
|
167 |
+
return pd.DataFrame()
|
168 |
+
|
169 |
+
def analyze_jobs_in_batches(
|
170 |
+
client,
|
171 |
+
resume: str,
|
172 |
+
jobs_df: pd.DataFrame,
|
173 |
+
batch_size: int = 3
|
174 |
+
) -> pd.DataFrame:
|
175 |
+
"""
|
176 |
+
Process job listings in batches and analyze match with resume.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
client: Groq AI client
|
180 |
+
resume (str): Resume text
|
181 |
+
jobs_df (pd.DataFrame): DataFrame of job listings
|
182 |
+
batch_size (int, optional): Number of jobs to process in each batch. Defaults to 3.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
pd.DataFrame: Sorted job matches by match score
|
186 |
+
"""
|
187 |
+
all_matches = []
|
188 |
+
jobs_dict = jobs_df.to_dict('records')
|
189 |
+
progress_bar = st.progress(0)
|
190 |
+
status_text = st.empty()
|
191 |
+
|
192 |
+
for i in range(0, len(jobs_dict), batch_size):
|
193 |
+
batch = jobs_dict[i:i + batch_size]
|
194 |
+
status_text.text(f"Processing batch {i//batch_size + 1} of {len(jobs_dict)//batch_size + 1}")
|
195 |
+
|
196 |
+
batch_matches = analyze_job_batch(client, resume, batch, i)
|
197 |
+
if not batch_matches.empty:
|
198 |
+
all_matches.append(batch_matches)
|
199 |
+
|
200 |
+
progress = min((i + batch_size) / len(jobs_dict), 1.0)
|
201 |
+
progress_bar.progress(progress)
|
202 |
+
time.sleep(1) # Rate limiting
|
203 |
+
|
204 |
+
progress_bar.empty()
|
205 |
+
status_text.empty()
|
206 |
+
|
207 |
+
if all_matches:
|
208 |
+
final_matches = pd.concat(all_matches, ignore_index=True)
|
209 |
+
return final_matches.sort_values('match_score', ascending=False)
|
210 |
+
return pd.DataFrame()
|
211 |
+
|
212 |
+
def main():
|
213 |
+
"""
|
214 |
+
Main Streamlit application entry point for Smart Job Search.
|
215 |
+
Handles user interface, job search, and AI-powered job matching.
|
216 |
+
"""
|
217 |
+
st.set_page_config(
|
218 |
+
layout="wide",
|
219 |
+
page_title="Smart Job Search with AI Matching",
|
220 |
+
initial_sidebar_state="collapsed"
|
221 |
+
)
|
222 |
+
|
223 |
+
# Custom CSS with reduced text sizes
|
224 |
+
st.markdown("""
|
225 |
+
<style>
|
226 |
+
.block-container {
|
227 |
+
padding-top: 1.5rem;
|
228 |
+
padding-bottom: 1.5rem;
|
229 |
+
max-width: 1200px;
|
230 |
+
}
|
231 |
+
.stButton>button {
|
232 |
+
background-color: #2563eb;
|
233 |
+
color: white;
|
234 |
+
border-radius: 0.375rem;
|
235 |
+
padding: 0.75rem 1.5rem;
|
236 |
+
border: none;
|
237 |
+
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
|
238 |
+
margin: 0.5rem;
|
239 |
+
min-width: 200px;
|
240 |
+
font-size: 0.875rem;
|
241 |
+
}
|
242 |
+
[data-testid="stFileUploader"] {
|
243 |
+
border: 2px dashed #e5e7eb;
|
244 |
+
border-radius: 0.5rem;
|
245 |
+
padding: 0.875rem;
|
246 |
+
min-height: 220px;
|
247 |
+
font-size: 0.875rem;
|
248 |
+
}
|
249 |
+
.stTextArea>div>div {
|
250 |
+
border-radius: 0.5rem;
|
251 |
+
min-height: 220px !important;
|
252 |
+
font-size: 0.875rem;
|
253 |
+
}
|
254 |
+
.stTextInput>div>div>input {
|
255 |
+
border-radius: 0.5rem;
|
256 |
+
font-size: 0.875rem;
|
257 |
+
}
|
258 |
+
.resume-html {
|
259 |
+
padding: 1.5rem;
|
260 |
+
max-width: 800px;
|
261 |
+
margin: 0 auto;
|
262 |
+
background: white;
|
263 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
264 |
+
border-radius: 0.5rem;
|
265 |
+
font-size: 0.875rem;
|
266 |
+
}
|
267 |
+
h1 {font-size: 3rem !important; /* Adjust this value to increase the font size */
|
268 |
+
} h2 {font-size: 1.5rem !important; /* Adjust this value to increase the font size */
|
269 |
+
h3, h4, h5, h6 {
|
270 |
+
font-size: 80% !important;
|
271 |
+
}
|
272 |
+
p, li {
|
273 |
+
font-size: 0.875rem !important;
|
274 |
+
}
|
275 |
+
</style>
|
276 |
+
""", unsafe_allow_html=True)
|
277 |
+
|
278 |
+
# Header with smaller text
|
279 |
+
st.markdown("""
|
280 |
+
<h1 style='text-align: center; font-size: 2.5rem; font-weight: 800; margin-bottom: 0.875rem;'>
|
281 |
+
π Smart Job Search with AI Matching
|
282 |
+
</h1>
|
283 |
+
""", unsafe_allow_html=True)
|
284 |
+
|
285 |
+
col1, col2 = st.columns(2)
|
286 |
+
|
287 |
+
with col1:
|
288 |
+
user_input = st.text_area(
|
289 |
+
"Describe the job you're looking for",
|
290 |
+
placeholder="E.g., 'Senior Python developer with React experience in San Francisco'",
|
291 |
+
height=150
|
292 |
+
)
|
293 |
+
|
294 |
+
with col2:
|
295 |
+
user_resume = st.text_area(
|
296 |
+
"Paste your resume here (for AI-powered matching)",
|
297 |
+
placeholder="Paste your resume for AI-powered job matching",
|
298 |
+
height=150
|
299 |
+
)
|
300 |
+
|
301 |
+
api_key = st.text_input(
|
302 |
+
"Enter your Groq API key",
|
303 |
+
type="password",
|
304 |
+
help="Your API key will be used to process the job search query"
|
305 |
+
)
|
306 |
+
|
307 |
+
# Add this CSS styling right after st.set_page_config()
|
308 |
+
|
309 |
+
|
310 |
+
if st.button("π Search Jobs", disabled=not api_key):
|
311 |
+
st.markdown("""
|
312 |
+
<style>
|
313 |
+
.stTabs [data-baseweb="tab-list"] {
|
314 |
+
display: flex;
|
315 |
+
justify-content: space-between;
|
316 |
+
width: 100%;
|
317 |
+
}
|
318 |
+
.stTabs [data-baseweb="tab"] {
|
319 |
+
flex: 1;
|
320 |
+
text-align: center;
|
321 |
+
}
|
322 |
+
</style>
|
323 |
+
""", unsafe_allow_html=True)
|
324 |
+
|
325 |
+
# Modify tab creation to use descriptive names
|
326 |
+
tab1, tab2, tab3 = st.tabs([
|
327 |
+
"π Job Listings",
|
328 |
+
"π Resume Summary",
|
329 |
+
"π€ AI Job Matching"
|
330 |
+
])
|
331 |
+
if user_input and api_key:
|
332 |
+
try:
|
333 |
+
client = groq.Client(api_key=api_key)
|
334 |
+
|
335 |
+
with st.spinner("Processing search parameters..."):
|
336 |
+
processed_params = convert_prompt_to_parameters(client, user_input)
|
337 |
+
|
338 |
+
with st.spinner("Searching for jobs..."):
|
339 |
+
jobs_data = get_job_data(processed_params)
|
340 |
+
|
341 |
+
if not jobs_data.empty:
|
342 |
+
data = pd.DataFrame(jobs_data)
|
343 |
+
data = data[data['description'].notna()].reset_index(drop=True)
|
344 |
+
|
345 |
+
with tab1:
|
346 |
+
st.success(f"Found {len(data)} jobs!")
|
347 |
+
display_df = data[['site', 'job_url', 'title', 'company', 'location', 'job_type', 'date_posted']]
|
348 |
+
display_df['job_url'] = display_df['job_url'].apply(make_clickable)
|
349 |
+
st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
|
350 |
+
|
351 |
+
if user_resume:
|
352 |
+
with tab2:
|
353 |
+
st.info("Analyzing resume summary...")
|
354 |
+
resume_summary = analyze_resume(client, user_resume)
|
355 |
+
st.success("Resume summary:")
|
356 |
+
st.write(resume_summary)
|
357 |
+
|
358 |
+
with tab3:
|
359 |
+
st.info("Analyzing job matches in small batches...")
|
360 |
+
matches_df = analyze_jobs_in_batches(client, resume_summary, data, batch_size=3)
|
361 |
+
|
362 |
+
if not matches_df.empty:
|
363 |
+
matched_jobs = data.iloc[matches_df['job_index']].copy()
|
364 |
+
matched_jobs['match_score'] = matches_df['match_score']
|
365 |
+
matched_jobs['match_reason'] = matches_df['reason']
|
366 |
+
|
367 |
+
st.success(f"Found {len(matched_jobs)} recommended matches!")
|
368 |
+
display_cols = ['site', 'job_url', 'title', 'company', 'location', 'match_score', 'match_reason']
|
369 |
+
display_df = matched_jobs[display_cols].sort_values('match_score', ascending=False)
|
370 |
+
display_df['job_url'] = display_df['job_url'].apply(make_clickable)
|
371 |
+
st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
|
372 |
+
else:
|
373 |
+
st.warning("Could not process job matches. Please try again.")
|
374 |
+
else:
|
375 |
+
st.warning("No jobs found with the given parameters.")
|
376 |
+
|
377 |
+
except Exception as e:
|
378 |
+
st.error(f"Error: {str(e)}")
|
379 |
+
elif not api_key:
|
380 |
+
st.warning("Please enter your API key.")
|
381 |
+
else:
|
382 |
+
st.warning("Please enter a job description.")
|
383 |
+
|
384 |
+
if __name__ == "__main__":
|
385 |
+
main()
|