Niharmahesh commited on
Commit
42f62ee
Β·
verified Β·
1 Parent(s): bf4d026

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +385 -0
app.py ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import groq
3
+ from jobspy import scrape_jobs
4
+ import pandas as pd
5
+ import json
6
+ from typing import List, Dict
7
+ import numpy as np
8
+ import time
9
+
10
+ def make_clickable(url: str) -> str:
11
+ """
12
+ Convert a URL to a clickable HTML link.
13
+
14
+ Args:
15
+ url (str): The URL to make clickable
16
+
17
+ Returns:
18
+ str: HTML anchor tag with the URL
19
+ """
20
+ return f'<a href="{url}" target="_blank" style="color: #4e79a7;">Link</a>'
21
+
22
+ def convert_prompt_to_parameters(client, prompt: str) -> Dict[str, str]:
23
+ """
24
+ Convert user input prompt to structured job search parameters using AI.
25
+
26
+ Args:
27
+ client: Groq AI client
28
+ prompt (str): User's job search description
29
+
30
+ Returns:
31
+ Dict[str, str]: Extracted search parameters with search_term and location
32
+ """
33
+ system_prompt = """
34
+ You are a language decoder. Extract:
35
+ - search_term: job role/keywords (expand abbreviations)
36
+ - location: mentioned place or 'USA'
37
+ Return only: {"search_term": "term", "location": "location"}
38
+ """
39
+
40
+ response = client.chat.completions.create(
41
+ messages=[
42
+ {"role": "system", "content": system_prompt},
43
+ {"role": "user", "content": f"Extract from: {prompt}"}
44
+ ],
45
+ max_tokens=1024,
46
+ model='llama3-70b-8192',
47
+ temperature=0.2
48
+ )
49
+
50
+ try:
51
+ return json.loads(response.choices[0].message.content)
52
+ except json.JSONDecodeError:
53
+ return {"search_term": prompt, "location": "USA"}
54
+
55
+ def analyze_resume(client, resume: str) -> str:
56
+ """
57
+ Generate a comprehensive resume analysis using AI.
58
+
59
+ Args:
60
+ client: Groq AI client
61
+ resume (str): Full resume text
62
+
63
+ Returns:
64
+ str: Concise professional overview of the resume
65
+ """
66
+ system_prompt = """Analyze resume comprehensively in 150 words:
67
+ 1. Professional Profile Summary
68
+ 2. Key Technical Skills
69
+ 3. Educational Background
70
+ 4. Core Professional Experience Highlights
71
+ 5. Unique Strengths/Achievements
72
+ Return a concise, structured professional overview."""
73
+
74
+ response = client.chat.completions.create(
75
+ messages=[
76
+ {"role": "system", "content": system_prompt},
77
+ {"role": "user", "content": resume}
78
+ ],
79
+ max_tokens=400,
80
+ model='llama3-70b-8192',
81
+ temperature=0.3
82
+ )
83
+
84
+ return response.choices[0].message.content
85
+
86
+ @st.cache_data(ttl=3600)
87
+ def get_job_data(search_params: Dict[str, str]) -> pd.DataFrame:
88
+ """
89
+ Fetch job listings from multiple sources based on search parameters.
90
+
91
+ Args:
92
+ search_params (Dict[str, str]): Search parameters including term and location
93
+
94
+ Returns:
95
+ pd.DataFrame: Scraped job listings
96
+ """
97
+ try:
98
+ return scrape_jobs(
99
+ site_name=["indeed", "linkedin", "zip_recruiter"],
100
+ search_term=search_params["search_term"],
101
+ location=search_params["location"],
102
+ results_wanted=60,
103
+ hours_old=24,
104
+ country_indeed='USA'
105
+ )
106
+ except Exception as e:
107
+ st.warning(f"Error in job scraping: {str(e)}")
108
+ return pd.DataFrame()
109
+
110
+ def analyze_job_batch(
111
+ client,
112
+ resume: str,
113
+ jobs_batch: List[Dict],
114
+ start_index: int,
115
+ retry_count: int = 0
116
+ ) -> pd.DataFrame:
117
+ """
118
+ Analyze a batch of jobs against the resume with retry logic.
119
+
120
+ Args:
121
+ client: Groq AI client
122
+ resume (str): Resume text
123
+ jobs_batch (List[Dict]): Batch of job listings
124
+ start_index (int): Starting index of the batch
125
+ retry_count (int, optional): Number of retry attempts. Defaults to 0.
126
+
127
+ Returns:
128
+ pd.DataFrame: Job match analysis results
129
+ """
130
+ if retry_count >= 3:
131
+ return pd.DataFrame()
132
+
133
+ system_prompt = """Rate resume-job matches. Return only JSON array:
134
+ [{"job_index": number, "match_score": 0-100, "reason": "brief reason"}]"""
135
+
136
+ jobs_info = [
137
+ {
138
+ 'index': idx + start_index,
139
+ 'title': job['title'],
140
+ 'desc': job.get('description', '')[:400],
141
+ }
142
+ for idx, job in enumerate(jobs_batch)
143
+ ]
144
+
145
+ resume_summary = analyze_resume(client, resume)
146
+
147
+ analysis_prompt = f"Resume: {resume_summary}\nJobs: {json.dumps(jobs_info)}"
148
+
149
+ try:
150
+ response = client.chat.completions.create(
151
+ messages=[
152
+ {"role": "system", "content": system_prompt},
153
+ {"role": "user", "content": analysis_prompt}
154
+ ],
155
+ max_tokens=1024,
156
+ model='llama3-70b-8192',
157
+ temperature=0.3
158
+ )
159
+
160
+ matches = json.loads(response.choices[0].message.content)
161
+ return pd.DataFrame(matches)
162
+ except Exception as e:
163
+ if retry_count < 3:
164
+ time.sleep(2)
165
+ return analyze_job_batch(client, resume, jobs_batch, start_index, retry_count + 1)
166
+ st.warning(f"Batch {start_index} failed after retries: {str(e)}")
167
+ return pd.DataFrame()
168
+
169
+ def analyze_jobs_in_batches(
170
+ client,
171
+ resume: str,
172
+ jobs_df: pd.DataFrame,
173
+ batch_size: int = 3
174
+ ) -> pd.DataFrame:
175
+ """
176
+ Process job listings in batches and analyze match with resume.
177
+
178
+ Args:
179
+ client: Groq AI client
180
+ resume (str): Resume text
181
+ jobs_df (pd.DataFrame): DataFrame of job listings
182
+ batch_size (int, optional): Number of jobs to process in each batch. Defaults to 3.
183
+
184
+ Returns:
185
+ pd.DataFrame: Sorted job matches by match score
186
+ """
187
+ all_matches = []
188
+ jobs_dict = jobs_df.to_dict('records')
189
+ progress_bar = st.progress(0)
190
+ status_text = st.empty()
191
+
192
+ for i in range(0, len(jobs_dict), batch_size):
193
+ batch = jobs_dict[i:i + batch_size]
194
+ status_text.text(f"Processing batch {i//batch_size + 1} of {len(jobs_dict)//batch_size + 1}")
195
+
196
+ batch_matches = analyze_job_batch(client, resume, batch, i)
197
+ if not batch_matches.empty:
198
+ all_matches.append(batch_matches)
199
+
200
+ progress = min((i + batch_size) / len(jobs_dict), 1.0)
201
+ progress_bar.progress(progress)
202
+ time.sleep(1) # Rate limiting
203
+
204
+ progress_bar.empty()
205
+ status_text.empty()
206
+
207
+ if all_matches:
208
+ final_matches = pd.concat(all_matches, ignore_index=True)
209
+ return final_matches.sort_values('match_score', ascending=False)
210
+ return pd.DataFrame()
211
+
212
+ def main():
213
+ """
214
+ Main Streamlit application entry point for Smart Job Search.
215
+ Handles user interface, job search, and AI-powered job matching.
216
+ """
217
+ st.set_page_config(
218
+ layout="wide",
219
+ page_title="Smart Job Search with AI Matching",
220
+ initial_sidebar_state="collapsed"
221
+ )
222
+
223
+ # Custom CSS with reduced text sizes
224
+ st.markdown("""
225
+ <style>
226
+ .block-container {
227
+ padding-top: 1.5rem;
228
+ padding-bottom: 1.5rem;
229
+ max-width: 1200px;
230
+ }
231
+ .stButton>button {
232
+ background-color: #2563eb;
233
+ color: white;
234
+ border-radius: 0.375rem;
235
+ padding: 0.75rem 1.5rem;
236
+ border: none;
237
+ box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
238
+ margin: 0.5rem;
239
+ min-width: 200px;
240
+ font-size: 0.875rem;
241
+ }
242
+ [data-testid="stFileUploader"] {
243
+ border: 2px dashed #e5e7eb;
244
+ border-radius: 0.5rem;
245
+ padding: 0.875rem;
246
+ min-height: 220px;
247
+ font-size: 0.875rem;
248
+ }
249
+ .stTextArea>div>div {
250
+ border-radius: 0.5rem;
251
+ min-height: 220px !important;
252
+ font-size: 0.875rem;
253
+ }
254
+ .stTextInput>div>div>input {
255
+ border-radius: 0.5rem;
256
+ font-size: 0.875rem;
257
+ }
258
+ .resume-html {
259
+ padding: 1.5rem;
260
+ max-width: 800px;
261
+ margin: 0 auto;
262
+ background: white;
263
+ box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
264
+ border-radius: 0.5rem;
265
+ font-size: 0.875rem;
266
+ }
267
+ h1 {font-size: 3rem !important; /* Adjust this value to increase the font size */
268
+ } h2 {font-size: 1.5rem !important; /* Adjust this value to increase the font size */
269
+ h3, h4, h5, h6 {
270
+ font-size: 80% !important;
271
+ }
272
+ p, li {
273
+ font-size: 0.875rem !important;
274
+ }
275
+ </style>
276
+ """, unsafe_allow_html=True)
277
+
278
+ # Header with smaller text
279
+ st.markdown("""
280
+ <h1 style='text-align: center; font-size: 2.5rem; font-weight: 800; margin-bottom: 0.875rem;'>
281
+ πŸš€ Smart Job Search with AI Matching
282
+ </h1>
283
+ """, unsafe_allow_html=True)
284
+
285
+ col1, col2 = st.columns(2)
286
+
287
+ with col1:
288
+ user_input = st.text_area(
289
+ "Describe the job you're looking for",
290
+ placeholder="E.g., 'Senior Python developer with React experience in San Francisco'",
291
+ height=150
292
+ )
293
+
294
+ with col2:
295
+ user_resume = st.text_area(
296
+ "Paste your resume here (for AI-powered matching)",
297
+ placeholder="Paste your resume for AI-powered job matching",
298
+ height=150
299
+ )
300
+
301
+ api_key = st.text_input(
302
+ "Enter your Groq API key",
303
+ type="password",
304
+ help="Your API key will be used to process the job search query"
305
+ )
306
+
307
+ # Add this CSS styling right after st.set_page_config()
308
+
309
+
310
+ if st.button("πŸ” Search Jobs", disabled=not api_key):
311
+ st.markdown("""
312
+ <style>
313
+ .stTabs [data-baseweb="tab-list"] {
314
+ display: flex;
315
+ justify-content: space-between;
316
+ width: 100%;
317
+ }
318
+ .stTabs [data-baseweb="tab"] {
319
+ flex: 1;
320
+ text-align: center;
321
+ }
322
+ </style>
323
+ """, unsafe_allow_html=True)
324
+
325
+ # Modify tab creation to use descriptive names
326
+ tab1, tab2, tab3 = st.tabs([
327
+ "πŸ” Job Listings",
328
+ "πŸ“„ Resume Summary",
329
+ "πŸ€– AI Job Matching"
330
+ ])
331
+ if user_input and api_key:
332
+ try:
333
+ client = groq.Client(api_key=api_key)
334
+
335
+ with st.spinner("Processing search parameters..."):
336
+ processed_params = convert_prompt_to_parameters(client, user_input)
337
+
338
+ with st.spinner("Searching for jobs..."):
339
+ jobs_data = get_job_data(processed_params)
340
+
341
+ if not jobs_data.empty:
342
+ data = pd.DataFrame(jobs_data)
343
+ data = data[data['description'].notna()].reset_index(drop=True)
344
+
345
+ with tab1:
346
+ st.success(f"Found {len(data)} jobs!")
347
+ display_df = data[['site', 'job_url', 'title', 'company', 'location', 'job_type', 'date_posted']]
348
+ display_df['job_url'] = display_df['job_url'].apply(make_clickable)
349
+ st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
350
+
351
+ if user_resume:
352
+ with tab2:
353
+ st.info("Analyzing resume summary...")
354
+ resume_summary = analyze_resume(client, user_resume)
355
+ st.success("Resume summary:")
356
+ st.write(resume_summary)
357
+
358
+ with tab3:
359
+ st.info("Analyzing job matches in small batches...")
360
+ matches_df = analyze_jobs_in_batches(client, resume_summary, data, batch_size=3)
361
+
362
+ if not matches_df.empty:
363
+ matched_jobs = data.iloc[matches_df['job_index']].copy()
364
+ matched_jobs['match_score'] = matches_df['match_score']
365
+ matched_jobs['match_reason'] = matches_df['reason']
366
+
367
+ st.success(f"Found {len(matched_jobs)} recommended matches!")
368
+ display_cols = ['site', 'job_url', 'title', 'company', 'location', 'match_score', 'match_reason']
369
+ display_df = matched_jobs[display_cols].sort_values('match_score', ascending=False)
370
+ display_df['job_url'] = display_df['job_url'].apply(make_clickable)
371
+ st.write(display_df.to_html(escape=False), unsafe_allow_html=True)
372
+ else:
373
+ st.warning("Could not process job matches. Please try again.")
374
+ else:
375
+ st.warning("No jobs found with the given parameters.")
376
+
377
+ except Exception as e:
378
+ st.error(f"Error: {str(e)}")
379
+ elif not api_key:
380
+ st.warning("Please enter your API key.")
381
+ else:
382
+ st.warning("Please enter a job description.")
383
+
384
+ if __name__ == "__main__":
385
+ main()