Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import gradio as gr | |
import spaces | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import snapshot_download | |
from test_ccsr_tile import load_pipeline | |
import argparse | |
from accelerate import Accelerator | |
# Initialize global variables | |
pipeline = None | |
generator = None | |
accelerator = None | |
class Args: | |
def __init__(self, **kwargs): | |
self.__dict__.update(kwargs) | |
# Initialize models at startup | |
def initialize_models(): | |
global pipeline, generator, accelerator | |
try: | |
# Download model repository | |
model_path = snapshot_download( | |
repo_id="NightRaven109/CCSRModels", | |
token=os.environ['Read2'] | |
) | |
# Set up default arguments | |
args = Args( | |
pretrained_model_path=os.path.join(model_path, "stable-diffusion-2-1-base"), | |
controlnet_model_path=os.path.join(model_path, "Controlnet"), | |
vae_model_path=os.path.join(model_path, "vae"), | |
mixed_precision="fp16", | |
tile_vae=False, | |
sample_method="ddpm", | |
vae_encoder_tile_size=1024, | |
vae_decoder_tile_size=224 | |
) | |
# Initialize accelerator | |
accelerator = Accelerator( | |
mixed_precision=args.mixed_precision, | |
) | |
# Load pipeline | |
pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention=False) | |
# Ensure all models are in eval mode and on CUDA | |
pipeline = pipeline.to("cuda") | |
pipeline.unet.eval() | |
pipeline.controlnet.eval() | |
pipeline.vae.eval() | |
pipeline.text_encoder.eval() | |
# Initialize generator | |
generator = torch.Generator("cuda") | |
print("Models initialized and ready!") | |
return True | |
except Exception as e: | |
print(f"Error initializing models: {str(e)}") | |
return False | |
# Load models at module level | |
print("Initializing models...") | |
initialize_models() | |
def process_image( | |
input_image, | |
prompt="clean, texture, high-resolution, 8k", | |
negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed", | |
guidance_scale=2.5, | |
conditioning_scale=1.0, | |
num_inference_steps=6, | |
seed=None, | |
upscale_factor=4, | |
color_fix_method="adain" | |
): | |
global pipeline, generator | |
try: | |
# Handle seed | |
if seed is not None and seed != 0: # Only set seed if it's provided and not 0 | |
if generator is None: | |
generator = torch.Generator("cuda") | |
generator.manual_seed(seed) | |
elif generator is None: | |
generator = torch.Generator("cuda") | |
# Create args object with all necessary parameters | |
args = Args( | |
added_prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
conditioning_scale=conditioning_scale, | |
num_inference_steps=num_inference_steps, | |
seed=seed, | |
upscale=upscale_factor, | |
process_size=512, | |
align_method=color_fix_method, | |
t_max=0.6666, | |
t_min=0.0, | |
tile_diffusion=False, | |
tile_diffusion_size=None, | |
tile_diffusion_stride=None, | |
start_steps=999, | |
start_point='lr', | |
use_vae_encode_condition=True, | |
sample_times=1 | |
) | |
# Process input image | |
validation_image = Image.fromarray(input_image) | |
ori_width, ori_height = validation_image.size | |
# Resize logic | |
resize_flag = False | |
if ori_width < args.process_size//args.upscale or ori_height < args.process_size//args.upscale: | |
scale = (args.process_size//args.upscale)/min(ori_width, ori_height) | |
validation_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height))) | |
resize_flag = True | |
validation_image = validation_image.resize((validation_image.size[0]*args.upscale, validation_image.size[1]*args.upscale)) | |
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8)) | |
width, height = validation_image.size | |
# Generate image | |
with torch.no_grad(): | |
inference_time, output = pipeline( | |
args.t_max, | |
args.t_min, | |
args.tile_diffusion, | |
args.tile_diffusion_size, | |
args.tile_diffusion_stride, | |
args.added_prompt, | |
validation_image, | |
num_inference_steps=args.num_inference_steps, | |
generator=generator, | |
height=height, | |
width=width, | |
guidance_scale=args.guidance_scale, | |
negative_prompt=args.negative_prompt, | |
conditioning_scale=args.conditioning_scale, | |
start_steps=args.start_steps, | |
start_point=args.start_point, | |
use_vae_encode_condition=True, | |
) | |
image = output.images[0] | |
# Apply color fixing if specified | |
if args.align_method != "none": | |
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix | |
fix_func = wavelet_color_fix if args.align_method == "wavelet" else adain_color_fix | |
image = fix_func(image, validation_image) | |
if resize_flag: | |
image = image.resize((ori_width*args.upscale, ori_height*args.upscale)) | |
return image | |
except Exception as e: | |
print(f"Error processing image: {str(e)}") | |
import traceback | |
traceback.print_exc() | |
return None | |
# Define default values | |
DEFAULT_VALUES = { | |
"prompt": "clean, texture, high-resolution, 8k", | |
"negative_prompt": "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed", | |
"guidance_scale": 3, | |
"conditioning_scale": 1.0, | |
"num_steps": 6, | |
"seed": None, | |
"upscale_factor": 4, | |
"color_fix_method": "adain" | |
} | |
# Create interface components | |
with gr.Blocks(title="Controllable Conditional Super-Resolution") as demo: | |
gr.Markdown("## Controllable Conditional Super-Resolution") | |
gr.Markdown("Upload an image to enhance its resolution using CCSR.") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image") | |
# Put all parameters in an accordion/dropdown | |
with gr.Accordion("Advanced Options", open=False): | |
prompt = gr.Textbox(label="Prompt", value=DEFAULT_VALUES["prompt"]) | |
negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_VALUES["negative_prompt"]) | |
guidance_scale = gr.Slider(minimum=1.0, maximum=20.0, value=DEFAULT_VALUES["guidance_scale"], label="Guidance Scale") | |
conditioning_scale = gr.Slider(minimum=0.1, maximum=2.0, value=DEFAULT_VALUES["conditioning_scale"], label="Conditioning Scale") | |
num_steps = gr.Slider(minimum=1, maximum=50, value=DEFAULT_VALUES["num_steps"], step=1, label="Number of Steps") | |
seed = gr.Number(label="Seed", value=DEFAULT_VALUES["seed"]) | |
upscale_factor = gr.Slider(minimum=1, maximum=8, value=DEFAULT_VALUES["upscale_factor"], step=1, label="Upscale Factor") | |
color_fix_method = gr.Dropdown( | |
choices=["none", "wavelet", "adain"], | |
label="Color Fix Method", | |
value=DEFAULT_VALUES["color_fix_method"] | |
) | |
# Add buttons | |
with gr.Row(): | |
clear_btn = gr.Button("Clear") | |
submit_btn = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
# Define submit action | |
submit_btn.click( | |
fn=process_image, | |
inputs=[ | |
input_image, prompt, negative_prompt, guidance_scale, | |
conditioning_scale, num_steps, seed, upscale_factor, | |
color_fix_method | |
], | |
outputs=output_image | |
) | |
# Define clear action that resets to default values | |
def reset_to_defaults(): | |
return [ | |
None, # input_image | |
DEFAULT_VALUES["prompt"], | |
DEFAULT_VALUES["negative_prompt"], | |
DEFAULT_VALUES["guidance_scale"], | |
DEFAULT_VALUES["conditioning_scale"], | |
DEFAULT_VALUES["num_steps"], | |
DEFAULT_VALUES["seed"], | |
DEFAULT_VALUES["upscale_factor"], | |
DEFAULT_VALUES["color_fix_method"] | |
] | |
clear_btn.click( | |
fn=reset_to_defaults, | |
inputs=None, | |
outputs=[ | |
input_image, prompt, negative_prompt, guidance_scale, | |
conditioning_scale, num_steps, seed, upscale_factor, | |
color_fix_method | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |