Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, DiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler | |
import gradio as gr | |
import os | |
import random | |
import numpy as np | |
import spaces | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if torch.cuda.is_available(): | |
device = "cuda" | |
print("Using GPU") | |
else: | |
device = "cpu" | |
print("Using CPU") | |
MAX_SEED = np.iinfo(np.int32).max | |
# Initialize the pipelines for each sd model | |
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained( | |
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 | |
) | |
sd3_medium_pipe.to(device) | |
sd2_1_pipe = StableDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 | |
) | |
sd2_1_pipe.to(device) | |
sdxl_pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
) | |
sdxl_pipe.to(device) | |
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained( | |
"sd-community/sdxl-flash", torch_dtype=torch.float16 | |
) | |
sdxl_flash_pipe.to(device) | |
# Ensure sampler uses "trailing" timesteps for sdxl flash. | |
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing") | |
# Helper function to generate images for a single model | |
def generate_single_image( | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
height, | |
width, | |
guidance_scale, | |
seed, | |
num_images_per_prompt, | |
model_choice, | |
generator, | |
): | |
# Select the correct pipeline based on the model choice | |
if model_choice == "sd3 medium": | |
pipe = sd3_medium_pipe | |
elif model_choice == "sd2.1": | |
pipe = sd2_1_pipe | |
elif model_choice == "sdxl": | |
pipe = sdxl_pipe | |
elif model_choice == "sdxl flash": | |
pipe = sdxl_flash_pipe | |
else: | |
raise ValueError(f"Invalid model choice: {model_choice}") | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_steps, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
num_images_per_prompt=num_images_per_prompt, | |
).images | |
return output | |
# Define the image generation function for the Arena tab | |
def generate_arena_images( | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
height, | |
width, | |
guidance_scale, | |
seed, | |
num_images_per_prompt, | |
model_choice_1, | |
model_choice_2, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if seed == 0: | |
seed = random.randint(1, 2**32 - 1) | |
generator = torch.Generator().manual_seed(seed) | |
# Generate images for both models | |
images_1 = generate_single_image( | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
height, | |
width, | |
guidance_scale, | |
seed, | |
num_images_per_prompt, | |
model_choice_1, | |
generator, | |
) | |
images_2 = generate_single_image( | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
height, | |
width, | |
guidance_scale, | |
seed, | |
num_images_per_prompt, | |
model_choice_2, | |
generator, | |
) | |
return images_1, images_2 | |
# Define the image generation function for the Individual tab | |
def generate_individual_image( | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
height, | |
width, | |
guidance_scale, | |
seed, | |
num_images_per_prompt, | |
model_choice, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if seed == 0: | |
seed = random.randint(1, 2**32 - 1) | |
generator = torch.Generator().manual_seed(seed) | |
output = generate_single_image( | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
height, | |
width, | |
guidance_scale, | |
seed, | |
num_images_per_prompt, | |
model_choice, | |
generator, | |
) | |
return output | |
# Create the Gradio interface | |
examples = [ | |
["A white car racing fast to the moon."], | |
["A woman in a red dress singing on top of a building."], | |
["An astronaut on mars in a futuristic cyborg suit."], | |
] | |
css = """ | |
.gradio-container{max-width: 1000px !important} | |
h1{text-align:center} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Stable Diffusion Arena | |
</h1> | |
""" | |
) | |
gr.HTML( | |
""" | |
Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a> | |
<br> <a href="https://discord.gg/osai"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a> | |
""" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Arena"): | |
with gr.Group(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Describe the image you want", | |
placeholder="A cat...", | |
) | |
model_choice_1 = gr.Dropdown( | |
label="Stable Diffusion Model 1", | |
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"], | |
value="sd3 medium", | |
) | |
model_choice_2 = gr.Dropdown( | |
label="Stable Diffusion Model 2", | |
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"], | |
value="sdxl", | |
) | |
run_button = gr.Button("Run") | |
result_1 = gr.Gallery(label="Generated Images (Model 1)", elem_id="gallery_1") | |
result_2 = gr.Gallery(label="Generated Images (Model 2)", elem_id="gallery_2") | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
info="Describe what you don't want in the image", | |
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
placeholder="Ugly, bad anatomy...", | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=7.5, | |
step=0.1, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
info="Width of the Image", | |
minimum=256, | |
maximum=1344, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
info="Height of the Image", | |
minimum=256, | |
maximum=1344, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
value=42, | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
label="Seed", | |
info="A starting point to initiate the generation process, put 0 for a random one", | |
) | |
num_images_per_prompt = gr.Slider( | |
label="Images Per Prompt", | |
info="Number of Images to generate with the settings", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=2, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt], | |
outputs=[result_1, result_2], | |
fn=generate_arena_images, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
run_button.click, | |
], | |
fn=generate_arena_images, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
width, | |
height, | |
guidance_scale, | |
seed, | |
num_images_per_prompt, | |
model_choice_1, | |
model_choice_2, | |
], | |
outputs=[result_1, result_2], | |
) | |
with gr.TabItem("Individual"): | |
with gr.Group(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Describe the image you want", | |
placeholder="A cat...", | |
) | |
model_choice = gr.Dropdown( | |
label="Stable Diffusion Model", | |
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"], | |
value="sd3 medium", | |
) | |
run_button = gr.Button("Run") | |
result = gr.Gallery(label="Generated AI Images", elem_id="gallery") | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
info="Describe what you don't want in the image", | |
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
placeholder="Ugly, bad anatomy...", | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=7.5, | |
step=0.1, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
info="Width of the Image", | |
minimum=256, | |
maximum=1344, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
info="Height of the Image", | |
minimum=256, | |
maximum=1344, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
value=42, | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
label="Seed", | |
info="A starting point to initiate the generation process, put 0 for a random one", | |
) | |
num_images_per_prompt = gr.Slider( | |
label="Images Per Prompt", | |
info="Number of Images to generate with the settings", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=2, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt], | |
outputs=[result], | |
fn=generate_individual_image, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
run_button.click, | |
], | |
fn=generate_individual_image, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
width, | |
height, | |
guidance_scale, | |
seed, | |
num_images_per_prompt, | |
model_choice, | |
], | |
outputs=[result], | |
) | |
demo.queue().launch(share=False) |