File size: 9,845 Bytes
052e52f
 
 
 
3f861d9
cbda7a6
72b4474
0fd9053
 
 
 
 
aa84359
6156a6a
 
573cef7
 
052e52f
77e49e3
573cef7
cbda7a6
 
d9a1f2d
0fd9053
d9a1f2d
0fd9053
 
 
 
 
 
 
 
d9a1f2d
0fd9053
 
 
d9a1f2d
6073c44
85cb515
052e52f
 
 
 
 
0fd9053
 
 
 
 
 
 
 
d9a1f2d
 
0fd9053
 
 
 
d9a1f2d
 
0fd9053
 
 
 
 
d9a1f2d
0fd9053
 
 
 
d9a1f2d
0fd9053
 
d9a1f2d
0fd9053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a1f2d
 
 
 
 
 
0fd9053
 
 
 
d9a1f2d
0fd9053
 
d9a1f2d
0fd9053
 
 
 
 
 
 
 
 
 
 
 
 
d9a1f2d
d9b7a74
 
 
 
 
 
 
 
 
 
 
 
 
0fd9053
04f308f
 
6156a6a
04f308f
 
 
 
 
 
d876bf1
 
 
 
 
 
 
 
04f308f
d876bf1
 
 
 
 
04f308f
 
 
 
0fd9053
558f5d1
 
aa84359
 
558f5d1
aa84359
558f5d1
 
 
 
aa84359
558f5d1
 
aa84359
558f5d1
 
 
 
0fd9053
 
558f5d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156a6a
0fd9053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b09c6
0fd9053
 
 
 
558f5d1
 
052e52f
558f5d1
 
 
 
 
 
 
 
a8f0234
558f5d1
a8f0234
558f5d1
a8f0234
6156a6a
a8f0234
558f5d1
6156a6a
 
 
 
 
 
 
 
558f5d1
6156a6a
a8f0234
558f5d1
6156a6a
 
 
a8f0234
6156a6a
 
 
 
 
05b09c6
691414c
1a1cf31
691414c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from flask import Flask, request
from twilio.twiml.messaging_response import MessagingResponse
from twilio.rest import Client
import os
import requests
from PIL import Image
import shutil

from langchain.vectorstores.chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
from get_embedding_function import get_embedding_function
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
import tempfile

app = Flask(__name__)
UPLOAD_FOLDER = '/code/uploads'
CHROMA_PATH = tempfile.mkdtemp()  # Use the same folder for Chroma
if not os.path.exists(UPLOAD_FOLDER):
    os.makedirs(UPLOAD_FOLDER)

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

class ConversationBufferMemory:
    def __init__(self, max_size=6):
        self.memory = []
        self.max_size = max_size

    def add_to_memory(self, interaction):
        self.memory.append(interaction)
        if len(self.memory) > self.max_size:
            self.memory.pop(0)

    def get_memory(self):
        return self.memory

conversation_memory = ConversationBufferMemory(max_size=2)

account_sid = os.environ.get('TWILIO_ACCOUNT_SID')
auth_token = os.environ.get('TWILIO_AUTH_TOKEN')
client = Client(account_sid, auth_token)
from_whatsapp_number = 'whatsapp:+14155238886'

PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""

AI71_API_KEY = os.environ.get('AI71_API_KEY')

def generate_response(query, chat_history):
    response = ''
    for chunk in AI71(AI71_API_KEY).chat.completions.create(
            model="tiiuae/falcon-180b-chat",
            messages=[
                {"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."},
                {"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''},
            ],
            stream=True,
    ):
        if chunk.choices[0].delta.content:
            response += chunk.choices[0].delta.content
    return response.replace("###", '').replace('\nUser:', '')

def convert_img(url, account_sid, auth_token):
    try:
        response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
        response.raise_for_status()

        parsed_url = urlparse(url)
        media_id = parsed_url.path.split('/')[-1]
        filename = f"downloaded_media_{media_id}"

        media_filepath = os.path.join(UPLOAD_FOLDER, filename)
        with open(media_filepath, 'wb') as file:
            file.write(response.content)
        
        print(f"Media downloaded successfully and saved as {media_filepath}")

        with open(media_filepath, 'rb') as img_file:
            image = Image.open(img_file)

            converted_filename = f"image.jpg"
            converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename)
            image.convert('RGB').save(converted_filepath, 'JPEG')
            return converted_filepath

    except requests.exceptions.HTTPError as err:
        print(f"HTTP error occurred: {err}")
    except Exception as err:
        print(f"An error occurred: {err}")

def get_weather(city):
    city = city.strip().replace(' ', '+')
    r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
    soup = BeautifulSoup(r.text, 'html.parser')
    temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
    return temperature

def download_and_save_as_txt(url, account_sid, auth_token):
    try:
        response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
        response.raise_for_status()

        parsed_url = urlparse(url)
        media_id = parsed_url.path.split('/')[-1]
        filename = f"pdf_file.pdf"

        txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
        with open(txt_filepath, 'wb') as file:
            file.write(response.content)
        
        print(f"Media downloaded successfully and saved as {txt_filepath}")
        return txt_filepath

    except requests.exceptions.HTTPError as err:
        print(f"HTTP error occurred: {err}")
    except Exception as err:
        print(f"An error occurred: {err}")


def initialize_chroma():
    try:
        # Initialize Chroma
        db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
        # Perform an initial operation to ensure it works
        db.similarity_search_with_score("test query", k=1)
        print("Chroma initialized successfully.")
    except Exception as e:
        print(f"Error initializing Chroma: {e}")

initialize_chroma()

def query_rag(query_text: str):
    embedding_function = get_embedding_function()
    db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
    
    results = db.similarity_search_with_score(query_text, k=5)
    
    if not results:
        response_text = "Sorry, I couldn't find any relevant information."
    else:
        context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
        prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
        prompt = prompt_template.format(context=context_text, question=query_text)
        
        response = ''
        for chunk in AI71(AI71_API_KEY).chat.completions.create(
                model="tiiuae/falcon-180b-chat",
                messages=[
                    {"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."},
                    {"role": "user", "content": f'''Answer the following query based on the given context: {prompt}'''},
                ],
                stream=True,
        ):
            if chunk.choices[0].delta.content:
                response += chunk.choices[0].delta.content

        response_text = response.replace("###", '').replace('\nUser:', '')

    return response_text

def save_pdf_and_update_database(pdf_filepath):
    try:
        # Assuming you're loading PDFs from a specific directory
        document_loader = PyPDFDirectoryLoader(os.path.dirname(pdf_filepath))
        documents = document_loader.load()
        
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=800,
            chunk_overlap=80,
            length_function=len,
            is_separator_regex=False,
        )
        chunks = text_splitter.split_documents(documents)
        
        add_to_chroma(chunks)
        print(f"PDF processed and data updated in Chroma.")
    except Exception as e:
        print(f"Error in processing PDF: {e}")

def add_to_chroma(chunks: list[Document]):
    try:
        db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
        chunks_with_ids = calculate_chunk_ids(chunks)
        existing_items = db.get(include=[])
        existing_ids = set(existing_items["ids"])

        new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids]

        if new_chunks:
            new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
            db.add_documents(new_chunks, ids=new_chunk_ids)
            db.persist()
            print(f"Chunks added to Chroma.")
    except Exception as e:
        print(f"Error adding chunks to Chroma: {e}")

def calculate_chunk_ids(chunks):
    last_page_id = None
    current_chunk_index = 0

    for chunk in chunks:
        source = chunk.metadata.get("source")
        page = chunk.metadata.get("page")
        current_page_id = f"{source}:{page}"

        if current_page_id == last_page_id:
            current_chunk_index += 1
        else:
            current_chunk_index = 0

        last_page_id = current_page_id
        chunk_id = f"{current_page_id}:{current_chunk_index}"
        chunk.metadata["id"] = chunk_id

    return chunks

@app.route('/whatsapp', methods=['POST'])
def whatsapp_webhook():
    incoming_msg = request.values.get('Body', '').lower()
    sender = request.values.get('From')
    num_media = int(request.values.get('NumMedia', 0))

    chat_history = conversation_memory.get_memory()

    if num_media > 0:
        media_url = request.values.get('MediaUrl0')
        content_type = request.values.get('MediaContentType0')

        if content_type.startswith('image/'):
            # Handle image processing (disease/pest detection)
            filepath = convert_img(media_url, account_sid, auth_token)
            response_text = handle_image(filepath)
        elif content_type == 'application/pdf':
            # Handle PDF processing
            filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
            save_pdf_and_update_database(filepath)
            response_text = "PDF received and processed."
        else:
            response_text = "Unsupported media type. Please send a PDF or image file."
    elif "weather" in incoming_msg:
        city = incoming_msg.replace("weather", "").strip()
        temperature = get_weather(city)
        response_text = f"The current temperature in {city} is {temperature}"
    else:
        # Generate response using the question and chat history
        response_text = query_rag(incoming_msg)

    # Add interaction to memory
    interaction = {'role': 'user', 'content': incoming_msg, 'response': response_text}
    conversation_memory.add_to_memory(interaction)

    # Send the response
    resp = MessagingResponse()
    msg = resp.message()
    msg.body(response_text)
    return str(resp)
if __name__ == "__main__":
    send_initial_message('919080522395')
    send_initial_message('916382792828')
    app.run(host='0.0.0.0', port=7860)