Spaces:
Sleeping
Sleeping
File size: 9,845 Bytes
052e52f 3f861d9 cbda7a6 72b4474 0fd9053 aa84359 6156a6a 573cef7 052e52f 77e49e3 573cef7 cbda7a6 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 6073c44 85cb515 052e52f 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d d9b7a74 0fd9053 04f308f 6156a6a 04f308f d876bf1 04f308f d876bf1 04f308f 0fd9053 558f5d1 aa84359 558f5d1 aa84359 558f5d1 aa84359 558f5d1 aa84359 558f5d1 0fd9053 558f5d1 6156a6a 0fd9053 05b09c6 0fd9053 558f5d1 052e52f 558f5d1 a8f0234 558f5d1 a8f0234 558f5d1 a8f0234 6156a6a a8f0234 558f5d1 6156a6a 558f5d1 6156a6a a8f0234 558f5d1 6156a6a a8f0234 6156a6a 05b09c6 691414c 1a1cf31 691414c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
from flask import Flask, request
from twilio.twiml.messaging_response import MessagingResponse
from twilio.rest import Client
import os
import requests
from PIL import Image
import shutil
from langchain.vectorstores.chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
from get_embedding_function import get_embedding_function
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
import tempfile
app = Flask(__name__)
UPLOAD_FOLDER = '/code/uploads'
CHROMA_PATH = tempfile.mkdtemp() # Use the same folder for Chroma
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
class ConversationBufferMemory:
def __init__(self, max_size=6):
self.memory = []
self.max_size = max_size
def add_to_memory(self, interaction):
self.memory.append(interaction)
if len(self.memory) > self.max_size:
self.memory.pop(0)
def get_memory(self):
return self.memory
conversation_memory = ConversationBufferMemory(max_size=2)
account_sid = os.environ.get('TWILIO_ACCOUNT_SID')
auth_token = os.environ.get('TWILIO_AUTH_TOKEN')
client = Client(account_sid, auth_token)
from_whatsapp_number = 'whatsapp:+14155238886'
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
AI71_API_KEY = os.environ.get('AI71_API_KEY')
def generate_response(query, chat_history):
response = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."},
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
return response.replace("###", '').replace('\nUser:', '')
def convert_img(url, account_sid, auth_token):
try:
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status()
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1]
filename = f"downloaded_media_{media_id}"
media_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(media_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {media_filepath}")
with open(media_filepath, 'rb') as img_file:
image = Image.open(img_file)
converted_filename = f"image.jpg"
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename)
image.convert('RGB').save(converted_filepath, 'JPEG')
return converted_filepath
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
def get_weather(city):
city = city.strip().replace(' ', '+')
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
soup = BeautifulSoup(r.text, 'html.parser')
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
return temperature
def download_and_save_as_txt(url, account_sid, auth_token):
try:
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status()
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1]
filename = f"pdf_file.pdf"
txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(txt_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {txt_filepath}")
return txt_filepath
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
def initialize_chroma():
try:
# Initialize Chroma
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
# Perform an initial operation to ensure it works
db.similarity_search_with_score("test query", k=1)
print("Chroma initialized successfully.")
except Exception as e:
print(f"Error initializing Chroma: {e}")
initialize_chroma()
def query_rag(query_text: str):
embedding_function = get_embedding_function()
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
results = db.similarity_search_with_score(query_text, k=5)
if not results:
response_text = "Sorry, I couldn't find any relevant information."
else:
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
response = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."},
{"role": "user", "content": f'''Answer the following query based on the given context: {prompt}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
response_text = response.replace("###", '').replace('\nUser:', '')
return response_text
def save_pdf_and_update_database(pdf_filepath):
try:
# Assuming you're loading PDFs from a specific directory
document_loader = PyPDFDirectoryLoader(os.path.dirname(pdf_filepath))
documents = document_loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=80,
length_function=len,
is_separator_regex=False,
)
chunks = text_splitter.split_documents(documents)
add_to_chroma(chunks)
print(f"PDF processed and data updated in Chroma.")
except Exception as e:
print(f"Error in processing PDF: {e}")
def add_to_chroma(chunks: list[Document]):
try:
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
chunks_with_ids = calculate_chunk_ids(chunks)
existing_items = db.get(include=[])
existing_ids = set(existing_items["ids"])
new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids]
if new_chunks:
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
db.add_documents(new_chunks, ids=new_chunk_ids)
db.persist()
print(f"Chunks added to Chroma.")
except Exception as e:
print(f"Error adding chunks to Chroma: {e}")
def calculate_chunk_ids(chunks):
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
last_page_id = current_page_id
chunk_id = f"{current_page_id}:{current_chunk_index}"
chunk.metadata["id"] = chunk_id
return chunks
@app.route('/whatsapp', methods=['POST'])
def whatsapp_webhook():
incoming_msg = request.values.get('Body', '').lower()
sender = request.values.get('From')
num_media = int(request.values.get('NumMedia', 0))
chat_history = conversation_memory.get_memory()
if num_media > 0:
media_url = request.values.get('MediaUrl0')
content_type = request.values.get('MediaContentType0')
if content_type.startswith('image/'):
# Handle image processing (disease/pest detection)
filepath = convert_img(media_url, account_sid, auth_token)
response_text = handle_image(filepath)
elif content_type == 'application/pdf':
# Handle PDF processing
filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
save_pdf_and_update_database(filepath)
response_text = "PDF received and processed."
else:
response_text = "Unsupported media type. Please send a PDF or image file."
elif "weather" in incoming_msg:
city = incoming_msg.replace("weather", "").strip()
temperature = get_weather(city)
response_text = f"The current temperature in {city} is {temperature}"
else:
# Generate response using the question and chat history
response_text = query_rag(incoming_msg)
# Add interaction to memory
interaction = {'role': 'user', 'content': incoming_msg, 'response': response_text}
conversation_memory.add_to_memory(interaction)
# Send the response
resp = MessagingResponse()
msg = resp.message()
msg.body(response_text)
return str(resp)
if __name__ == "__main__":
send_initial_message('919080522395')
send_initial_message('916382792828')
app.run(host='0.0.0.0', port=7860)
|