Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,15 +10,11 @@ from langchain.vectorstores.chroma import Chroma
|
|
10 |
from langchain.prompts import ChatPromptTemplate
|
11 |
from langchain_community.llms.ollama import Ollama
|
12 |
from get_embedding_function import get_embedding_function
|
13 |
-
from langchain.document_loaders.pdf import
|
14 |
-
from
|
15 |
-
from langchain.schema
|
16 |
import tempfile
|
17 |
|
18 |
-
# Create a temporary directory for Chroma if running in Hugging Face Spaces
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
app = Flask(__name__)
|
23 |
UPLOAD_FOLDER = '/code/uploads'
|
24 |
CHROMA_PATH = tempfile.mkdtemp() # Use the same folder for Chroma
|
@@ -54,21 +50,6 @@ Answer the question based only on the following context:
|
|
54 |
Answer the question based on the above context: {question}
|
55 |
"""
|
56 |
|
57 |
-
from bs4 import BeautifulSoup
|
58 |
-
import requests
|
59 |
-
from requests.auth import HTTPBasicAuth
|
60 |
-
from PIL import Image
|
61 |
-
from io import BytesIO
|
62 |
-
import pandas as pd
|
63 |
-
from urllib.parse import urlparse
|
64 |
-
import os
|
65 |
-
from pypdf import PdfReader
|
66 |
-
from ai71 import AI71
|
67 |
-
import uuid
|
68 |
-
|
69 |
-
from inference_sdk import InferenceHTTPClient
|
70 |
-
import base64
|
71 |
-
|
72 |
AI71_API_KEY = os.environ.get('AI71_API_KEY')
|
73 |
|
74 |
def generate_response(query, chat_history):
|
@@ -85,23 +66,6 @@ def generate_response(query, chat_history):
|
|
85 |
response += chunk.choices[0].delta.content
|
86 |
return response.replace("###", '').replace('\nUser:', '')
|
87 |
|
88 |
-
def predict_pest(filepath):
|
89 |
-
CLIENT = InferenceHTTPClient(
|
90 |
-
api_url="https://detect.roboflow.com",
|
91 |
-
api_key="oF1aC4b1FBCDtK8CoKx7"
|
92 |
-
)
|
93 |
-
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1")
|
94 |
-
return result['predictions'][0]
|
95 |
-
|
96 |
-
|
97 |
-
def predict_disease(filepath):
|
98 |
-
CLIENT = InferenceHTTPClient(
|
99 |
-
api_url="https://classify.roboflow.com",
|
100 |
-
api_key="oF1aC4b1FBCDtK8CoKx7"
|
101 |
-
)
|
102 |
-
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1")
|
103 |
-
return result['predicted_classes'][0]
|
104 |
-
|
105 |
def convert_img(url, account_sid, auth_token):
|
106 |
try:
|
107 |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
|
@@ -137,40 +101,6 @@ def get_weather(city):
|
|
137 |
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
|
138 |
return temperature
|
139 |
|
140 |
-
from zenrows import ZenRowsClient
|
141 |
-
Zenrow_api = os.environ.get('Zenrow_api')
|
142 |
-
zenrows_client = ZenRowsClient(Zenrow_api)
|
143 |
-
|
144 |
-
def get_rates():
|
145 |
-
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL"
|
146 |
-
response = zenrows_client.get(url)
|
147 |
-
|
148 |
-
if response.status_code == 200:
|
149 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
150 |
-
rows = soup.select('table tbody tr')
|
151 |
-
data = {}
|
152 |
-
for row in rows:
|
153 |
-
columns = row.find_all('td')
|
154 |
-
if len(columns) >= 2:
|
155 |
-
commodity = columns[0].get_text(strip=True)
|
156 |
-
price = columns[1].get_text(strip=True)
|
157 |
-
if '₹' in price:
|
158 |
-
data[commodity] = price
|
159 |
-
return str(data) + " These are the prices for 1 kg"
|
160 |
-
|
161 |
-
def get_news():
|
162 |
-
news = []
|
163 |
-
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr"
|
164 |
-
response = zenrows_client.get(url)
|
165 |
-
|
166 |
-
if response.status_code == 200:
|
167 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
168 |
-
headlines = soup.find_all("div", class_="eachStory")
|
169 |
-
for story in headlines:
|
170 |
-
headline = story.find('h3').text.strip()
|
171 |
-
news.append(headline)
|
172 |
-
return news
|
173 |
-
|
174 |
def download_and_save_as_txt(url, account_sid, auth_token):
|
175 |
try:
|
176 |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
|
@@ -208,15 +138,7 @@ initialize_chroma()
|
|
208 |
def query_rag(query_text: str):
|
209 |
embedding_function = get_embedding_function()
|
210 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
211 |
-
|
212 |
-
# Check if the query is related to a PDF
|
213 |
-
if "from pdf" in query_text.lower() or "in pdf" in query_text.lower():
|
214 |
-
# Provide some context about handling PDFs
|
215 |
-
response_text = "I see you're asking about a PDF-related query. Let me check the context from the PDF."
|
216 |
-
else:
|
217 |
-
# Regular RAG functionality
|
218 |
-
response_text = "Your query is not related to PDFs. Please make sure your question is clear."
|
219 |
-
|
220 |
results = db.similarity_search_with_score(query_text, k=5)
|
221 |
|
222 |
if not results:
|
@@ -241,38 +163,19 @@ def query_rag(query_text: str):
|
|
241 |
response_text = response.replace("###", '').replace('\nUser:', '')
|
242 |
|
243 |
return response_text
|
244 |
-
|
245 |
-
def download_file(url, extension):
|
246 |
-
try:
|
247 |
-
response = requests.get(url)
|
248 |
-
response.raise_for_status()
|
249 |
-
filename = f"{uuid.uuid4()}{extension}"
|
250 |
-
file_path = os.path.join(UPLOAD_FOLDER, filename)
|
251 |
-
|
252 |
-
with open(file_path, 'wb') as file:
|
253 |
-
file.write(response.content)
|
254 |
-
|
255 |
-
print(f"File downloaded and saved as {file_path}")
|
256 |
-
return file_path
|
257 |
|
258 |
-
except requests.exceptions.HTTPError as err:
|
259 |
-
print(f"HTTP error occurred: {err}")
|
260 |
-
except Exception as err:
|
261 |
-
print(f"An error occurred: {err}")
|
262 |
-
return None
|
263 |
def save_pdf_and_update_database(pdf_filepath):
|
264 |
try:
|
265 |
-
document_loader =
|
266 |
documents = document_loader.load()
|
267 |
-
|
268 |
text_splitter = RecursiveCharacterTextSplitter(
|
269 |
chunk_size=800,
|
270 |
chunk_overlap=80,
|
271 |
length_function=len,
|
272 |
-
is_separator_regex=False,
|
273 |
)
|
274 |
chunks = text_splitter.split_documents(documents)
|
275 |
-
|
276 |
add_to_chroma(chunks)
|
277 |
print(f"PDF processed and data updated in Chroma.")
|
278 |
except Exception as e:
|
@@ -294,6 +197,7 @@ def add_to_chroma(chunks: list[Document]):
|
|
294 |
print(f"Chunks added to Chroma.")
|
295 |
except Exception as e:
|
296 |
print(f"Error adding chunks to Chroma: {e}")
|
|
|
297 |
def calculate_chunk_ids(chunks):
|
298 |
last_page_id = None
|
299 |
current_chunk_index = 0
|
@@ -314,7 +218,6 @@ def calculate_chunk_ids(chunks):
|
|
314 |
|
315 |
return chunks
|
316 |
|
317 |
-
|
318 |
@app.route('/whatsapp', methods=['POST'])
|
319 |
def whatsapp_webhook():
|
320 |
incoming_msg = request.values.get('Body', '').lower()
|
@@ -331,74 +234,30 @@ def whatsapp_webhook():
|
|
331 |
# Handle image processing (disease/pest detection)
|
332 |
filepath = convert_img(media_url, account_sid, auth_token)
|
333 |
response_text = handle_image(filepath)
|
334 |
-
|
335 |
# Handle PDF processing
|
336 |
filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
elif
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
rates = get_rates()
|
346 |
-
response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history)
|
347 |
-
elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()):
|
348 |
-
news = get_news()
|
349 |
-
response_text = generate_response(incoming_msg + ' data is ' + str(news), chat_history)
|
350 |
else:
|
|
|
351 |
response_text = query_rag(incoming_msg)
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
def handle_image(filepath):
|
358 |
-
try:
|
359 |
-
disease = predict_disease(filepath)
|
360 |
-
except:
|
361 |
-
disease = None
|
362 |
-
try:
|
363 |
-
pest = predict_pest(filepath)
|
364 |
-
except:
|
365 |
-
pest = None
|
366 |
-
|
367 |
-
if disease:
|
368 |
-
response_text = f"Detected disease: {disease}"
|
369 |
-
disease_info = generate_response(f"Provide brief information about {disease} in plants", chat_history)
|
370 |
-
response_text += f"\n\nAdditional information: {disease_info}"
|
371 |
-
elif pest:
|
372 |
-
response_text = f"Detected pest: {pest}"
|
373 |
-
pest_info = generate_response(f"Provide brief information about {pest} in agriculture", chat_history)
|
374 |
-
response_text += f"\n\nAdditional information: {pest_info}"
|
375 |
-
else:
|
376 |
-
response_text = "Please upload another image with good quality."
|
377 |
-
|
378 |
-
return response_text
|
379 |
-
|
380 |
-
def process_and_query_pdf(filepath):
|
381 |
-
# Assuming the PDF processing and embedding are handled here.
|
382 |
-
add_to_chroma(load_documents())
|
383 |
-
return query_rag("from pdf") # Replace with a more specific query if needed
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
body=body,
|
391 |
-
to=to
|
392 |
-
)
|
393 |
-
print(f"Message sent with SID: {message.sid}")
|
394 |
-
except Exception as e:
|
395 |
-
print(f"Error sending message: {e}")
|
396 |
-
|
397 |
-
def send_initial_message(to_number):
|
398 |
-
send_message(
|
399 |
-
f'whatsapp:{to_number}',
|
400 |
-
'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.'
|
401 |
-
)
|
402 |
if __name__ == "__main__":
|
403 |
send_initial_message('919080522395')
|
404 |
send_initial_message('916382792828')
|
|
|
10 |
from langchain.prompts import ChatPromptTemplate
|
11 |
from langchain_community.llms.ollama import Ollama
|
12 |
from get_embedding_function import get_embedding_function
|
13 |
+
from langchain.document_loaders.pdf import PyPDFLoader
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.schema import Document
|
16 |
import tempfile
|
17 |
|
|
|
|
|
|
|
|
|
18 |
app = Flask(__name__)
|
19 |
UPLOAD_FOLDER = '/code/uploads'
|
20 |
CHROMA_PATH = tempfile.mkdtemp() # Use the same folder for Chroma
|
|
|
50 |
Answer the question based on the above context: {question}
|
51 |
"""
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
AI71_API_KEY = os.environ.get('AI71_API_KEY')
|
54 |
|
55 |
def generate_response(query, chat_history):
|
|
|
66 |
response += chunk.choices[0].delta.content
|
67 |
return response.replace("###", '').replace('\nUser:', '')
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def convert_img(url, account_sid, auth_token):
|
70 |
try:
|
71 |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
|
|
|
101 |
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
|
102 |
return temperature
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def download_and_save_as_txt(url, account_sid, auth_token):
|
105 |
try:
|
106 |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
|
|
|
138 |
def query_rag(query_text: str):
|
139 |
embedding_function = get_embedding_function()
|
140 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
141 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
results = db.similarity_search_with_score(query_text, k=5)
|
143 |
|
144 |
if not results:
|
|
|
163 |
response_text = response.replace("###", '').replace('\nUser:', '')
|
164 |
|
165 |
return response_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
|
|
|
|
|
|
|
|
|
|
167 |
def save_pdf_and_update_database(pdf_filepath):
|
168 |
try:
|
169 |
+
document_loader = PyPDFLoader(pdf_filepath)
|
170 |
documents = document_loader.load()
|
171 |
+
|
172 |
text_splitter = RecursiveCharacterTextSplitter(
|
173 |
chunk_size=800,
|
174 |
chunk_overlap=80,
|
175 |
length_function=len,
|
|
|
176 |
)
|
177 |
chunks = text_splitter.split_documents(documents)
|
178 |
+
|
179 |
add_to_chroma(chunks)
|
180 |
print(f"PDF processed and data updated in Chroma.")
|
181 |
except Exception as e:
|
|
|
197 |
print(f"Chunks added to Chroma.")
|
198 |
except Exception as e:
|
199 |
print(f"Error adding chunks to Chroma: {e}")
|
200 |
+
|
201 |
def calculate_chunk_ids(chunks):
|
202 |
last_page_id = None
|
203 |
current_chunk_index = 0
|
|
|
218 |
|
219 |
return chunks
|
220 |
|
|
|
221 |
@app.route('/whatsapp', methods=['POST'])
|
222 |
def whatsapp_webhook():
|
223 |
incoming_msg = request.values.get('Body', '').lower()
|
|
|
234 |
# Handle image processing (disease/pest detection)
|
235 |
filepath = convert_img(media_url, account_sid, auth_token)
|
236 |
response_text = handle_image(filepath)
|
237 |
+
elif content_type == 'application/pdf':
|
238 |
# Handle PDF processing
|
239 |
filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
|
240 |
+
save_pdf_and_update_database(filepath)
|
241 |
+
response_text = "PDF received and processed."
|
242 |
+
else:
|
243 |
+
response_text = "Unsupported media type. Please send a PDF or image file."
|
244 |
+
elif "weather" in incoming_msg:
|
245 |
+
city = incoming_msg.replace("weather", "").strip()
|
246 |
+
temperature = get_weather(city)
|
247 |
+
response_text = f"The current temperature in {city} is {temperature}"
|
|
|
|
|
|
|
|
|
|
|
248 |
else:
|
249 |
+
# Generate response using the question and chat history
|
250 |
response_text = query_rag(incoming_msg)
|
251 |
|
252 |
+
# Add interaction to memory
|
253 |
+
interaction = {'role': 'user', 'content': incoming_msg, 'response': response_text}
|
254 |
+
conversation_memory.add_to_memory(interaction)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
+
# Send the response
|
257 |
+
resp = MessagingResponse()
|
258 |
+
msg = resp.message()
|
259 |
+
msg.body(response_text)
|
260 |
+
return str(resp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
if __name__ == "__main__":
|
262 |
send_initial_message('919080522395')
|
263 |
send_initial_message('916382792828')
|