Remove-Background / helper.py
NeuralFalcon's picture
Upload 7 files
d62e696 verified
raw
history blame
13.6 kB
import cv2
import numpy as np
import os
import shutil
import subprocess
import glob
from tqdm.auto import tqdm
import uuid
import re
from zipfile import ZipFile
gpu = False
os.makedirs("./results",exist_ok=True)
def apply_green_screen(image_path, save_path,foreground_segmenter):
"""
Replaces the background of the input image with green using a segmentation model.
Args:
image_path (str): Path to the input image.
segmenter (SoftForegroundSegmenter): Initialized segmentation model.
save_path (str, optional): If provided, saves the result to this path.
Returns:
np.ndarray: The green screen composited image.
"""
# Load image with alpha if available
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
if image is None:
raise FileNotFoundError(f"Image not found: {image_path}")
# Remove transparency if present
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
# Convert to RGB for the model
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Get segmentation mask
mask = foreground_segmenter.estimate_foreground_segmentation(image_rgb)
# Normalize and convert mask to 0-255 uint8
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
else:
mask = mask.astype(np.uint8)
if mask.ndim == 2:
mask_gray = mask
elif mask.shape[2] == 1:
mask_gray = mask[:, :, 0]
else:
mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
_, binary_mask = cv2.threshold(mask_gray, 128, 255, cv2.THRESH_BINARY)
# Create green background
green_bg = np.full_like(image_rgb, (0, 255, 0), dtype=np.uint8)
# Create 3-channel mask
mask_3ch = cv2.cvtColor(binary_mask, cv2.COLOR_GRAY2BGR)
# Composite: foreground from image, background as green
output_rgb = np.where(mask_3ch == 255, image_rgb, green_bg)
# Convert back to BGR for OpenCV
output_bgr = cv2.cvtColor(output_rgb, cv2.COLOR_RGB2BGR)
# Save if path is given
if save_path:
cv2.imwrite(save_path, output_bgr)
return output_bgr
def create_transparent_foreground(image_path,foreground_segmenter):
uid = uuid.uuid4().hex[:8].upper()
base_name = os.path.splitext(os.path.basename(image_path))[0]
base_name = re.sub(r'[^a-zA-Z\s]', '', base_name)
base_name = base_name.strip().replace(" ", "_").replace("__","_")
save_path = f"./results/{base_name}_{uid}.png"
save_path = os.path.abspath(save_path)
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
if image is None:
raise FileNotFoundError(f"Image not found: {image_path}")
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = foreground_segmenter.estimate_foreground_segmentation(image_rgb)
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
else:
mask = mask.astype(np.uint8)
if mask.ndim == 3 and mask.shape[2] == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
_, alpha = cv2.threshold(mask, 128, 255, cv2.THRESH_BINARY)
rgba_image = np.dstack((image_rgb, alpha))
cv2.imwrite(save_path, cv2.cvtColor(rgba_image, cv2.COLOR_RGBA2BGRA))
return image_rgb, rgba_image, save_path
def remove_background_batch_images(img_list, foreground_segmenter):
# Create unique temp directory
uid = uuid.uuid4().hex[:8].upper()
temp_dir = os.path.abspath(f"./results/bg_removed_{uid}")
os.makedirs(temp_dir, exist_ok=True)
# Process each image
for image_path in tqdm(img_list, desc="Removing Backgrounds"):
_, _, save_path = create_transparent_foreground(image_path, foreground_segmenter)
shutil.move(save_path, os.path.join(temp_dir, os.path.basename(save_path)))
# Create zip file
zip_path = f"{temp_dir}.zip"
with ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(temp_dir):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, start=temp_dir)
zipf.write(file_path, arcname=arcname)
# shutil.rmtree(temp_dir)
return os.path.abspath(zip_path)
def get_sorted_paths(directory, extension="png"):
"""
Returns full paths of all images with the given extension, sorted by filename (without extension).
"""
extension = extension.lstrip(".").lower()
pattern = os.path.join(directory, f"*.{extension}")
files = glob.glob(pattern)
files.sort(key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
return files
def extract_all_frames_ffmpeg_gpu(video_path, output_dir="frames", extension="png", use_gpu=True):
"""
Extracts all frames from a video using ffmpeg, with optional GPU acceleration.
Returns a sorted list of full paths to the extracted frames.
"""
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
extension = extension.lstrip(".")
output_pattern = os.path.join(output_dir, f"%05d.{extension}")
command = [
"ffmpeg", "-i", video_path, output_pattern
]
if use_gpu:
command.insert(1, "cuda")
command.insert(1, "-hwaccel")
print("Running command:", " ".join(command))
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return get_sorted_paths(output_dir, extension)
def green_screen_batch(frames, foreground_segmenter,output_dir="green_screen_frames"):
"""
Applies green screen background to a batch of frames and saves the results.
Args:
frames (List[str]): List of image paths.
output_dir (str): Directory to save green-screened output.
"""
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
green_screen_frames=[]
for frame in tqdm(frames, desc="Processing green screen frames"):
save_image_path=os.path.join(output_dir, os.path.basename(frame))
result = apply_green_screen(
frame,
save_image_path,
foreground_segmenter
)
green_screen_frames.append(save_image_path)
return green_screen_frames
def green_screen_video_maker(original_video, green_screen_frames, batch_size=100):
"""
Creates video chunks from green screen frames based on original video's properties.
Args:
original_video (str): Path to the original video file (to read FPS, size).
green_screen_frames (List[str]): List of green screen frame paths.
batch_size (int): Number of frames per chunked video.
"""
temp_folder = "temp_video"
if os.path.exists(temp_folder):
shutil.rmtree(temp_folder)
os.makedirs(temp_folder, exist_ok=True)
# Get video info from original video
cap = cv2.VideoCapture(original_video)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
total_frames = len(green_screen_frames)
num_chunks = (total_frames + batch_size - 1) // batch_size # Ceiling division
for chunk_idx in tqdm(range(num_chunks), desc="Processing video chunks"):
chunk_path = os.path.join(temp_folder, f"{chunk_idx+1}.mp4")
out = cv2.VideoWriter(chunk_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
start_idx = chunk_idx * batch_size
end_idx = min(start_idx + batch_size, total_frames)
for frame_path in green_screen_frames[start_idx:end_idx]:
frame = cv2.imread(frame_path)
frame = cv2.resize(frame, (width, height)) # Ensure matching resolution
out.write(frame)
out.release()
def merge_video_chunks(output_path="final_video.mp4", temp_folder="temp_video", use_gpu=True):
"""
Merges all video chunks from temp_folder into a final single video.
"""
os.makedirs("./results", exist_ok=True)
output_path = f"../results/{output_path}" # relative to temp_folder
file_list_path = os.path.join(temp_folder, "chunks.txt")
chunk_files=sorted(
[f for f in os.listdir(temp_folder) if f.lower().endswith("mp4")],
key=lambda x: int(os.path.splitext(x)[0])
)
with open(file_list_path, "w") as f:
for chunk in chunk_files:
f.write(f"file '{chunk}'\n") # βœ… No './' prefix
ffmpeg_cmd = ["ffmpeg", "-y", "-f", "concat", "-safe", "0", "-i", "chunks.txt"]
if use_gpu:
ffmpeg_cmd += ["-c:v", "h264_nvenc", "-preset", "fast"]
else:
ffmpeg_cmd += ["-c", "copy"]
ffmpeg_cmd.append(output_path)
# βœ… Run from inside temp_folder, so chunks.txt and mp4 files are local
subprocess.run(ffmpeg_cmd, cwd=temp_folder, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
def extract_audio_from_video(video_path, output_audio_path="output_audio.wav", format="wav", sample_rate=16000, channels=1):
"""
Extracts audio from a video file using ffmpeg.
Args:
video_path (str): Path to the input video file.
output_audio_path (str): Path to save the extracted audio (e.g., .wav or .mp3).
format (str): 'wav' or 'mp3'
sample_rate (int): Sampling rate in Hz (e.g., 16000 for ASR models)
channels (int): Number of audio channels (1=mono, 2=stereo)
"""
# Ensure the output directory exists
os.makedirs(os.path.dirname(output_audio_path) or ".", exist_ok=True)
# Build ffmpeg command
if format.lower() == "wav":
command = [
"ffmpeg", "-y", # Overwrite output
"-i", video_path, # Input video
"-vn", # Disable video
"-ac", str(channels), # Audio channels (1 = mono)
"-ar", str(sample_rate), # Audio sample rate
"-acodec", "pcm_s16le", # WAV codec
output_audio_path
]
elif format.lower() == "mp3":
command = [
"ffmpeg", "-y",
"-i", video_path,
"-vn",
"-ac", str(channels),
"-ar", str(sample_rate),
"-acodec", "libmp3lame", # MP3 codec
output_audio_path
]
else:
raise ValueError("Unsupported format. Use 'wav' or 'mp3'.")
# Run command silently
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
def add_audio(video_path, audio_path, output_path, use_gpu=False):
"""
Replaces the audio of a video with a new audio track.
Args:
video_path (str): Path to the video file.
audio_path (str): Path to the audio file.
output_path (str): Path where the final video will be saved.
use_gpu (bool): If True, use GPU-accelerated video encoding.
"""
os.makedirs(os.path.dirname(output_path), exist_ok=True)
command = [
"ffmpeg", "-y", # Overwrite without asking
"-i", video_path, # Input video
"-i", audio_path, # Input audio
"-map", "0:v:0", # Use video from first input
"-map", "1:a:0", # Use audio from second input
"-shortest" # Trim to the shortest stream (audio/video)
]
if use_gpu:
command += ["-c:v", "h264_nvenc", "-preset", "fast"]
else:
command += ["-c:v", "copy"]
command += ["-c:a", "aac", "-b:a", "192k", output_path]
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
def remove_background_from_video(uploaded_video_path,foreground_segmenter):
# πŸ” Generate a single UUID to use for all related files
uid = uuid.uuid4().hex[:8].upper()
# Define all output paths using that UUID
base_name = os.path.splitext(os.path.basename(uploaded_video_path))[0]
base_name = re.sub(r'[^a-zA-Z\s]', '', base_name)
base_name = base_name.strip().replace(" ", "_")
temp_video_path = f"./results/{base_name}_chunks_{uid}.mp4"
audio_path = f"./results/{base_name}_audio_{uid}.wav"
final_output_path = f"./results/{base_name}_final_{uid}.mp4"
# Step 1: Extract frames
frames = extract_all_frames_ffmpeg_gpu(
video_path=uploaded_video_path,
output_dir="frames",
extension="png",
use_gpu=gpu
)
# Step 2: Remove background (green screen)
green_screen_frames = green_screen_batch(frames,foreground_segmenter)
# Step 3: Rebuild video from frames
green_screen_video_maker(uploaded_video_path, green_screen_frames, batch_size=100)
# Step 4: Merge video chunks
merge_video_chunks(output_path=os.path.basename(temp_video_path), use_gpu=gpu)
# Step 5: Extract original audio
extract_audio_from_video(uploaded_video_path, output_audio_path=audio_path)
# Step 6: Add audio back
add_audio(
video_path=temp_video_path,
audio_path=audio_path,
output_path=final_output_path,
use_gpu=True
)
return os.path.abspath(final_output_path)