Spaces:
Runtime error
Runtime error
Upload 7 files
Browse files- app.py +86 -0
- helper.py +376 -0
- packages.txt +1 -0
- pixelwise_estimator.py +114 -0
- requirement.txt +7 -0
- soft_foreground_segmenter.py +78 -0
- utils.py +163 -0
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_imageslider import ImageSlider
|
3 |
+
from helper import create_transparent_foreground,remove_background_batch_images,remove_background_from_video
|
4 |
+
from soft_foreground_segmenter import SoftForegroundSegmenter
|
5 |
+
foreground_model = "foreground-segmentation-model-vitl16_384.onnx"
|
6 |
+
foreground_segmenter = SoftForegroundSegmenter(onnx_model=foreground_model)
|
7 |
+
|
8 |
+
def process_image(image_path):
|
9 |
+
original, transparent, output_image_path = create_transparent_foreground(image_path,foreground_segmenter)
|
10 |
+
return (original, transparent), output_image_path
|
11 |
+
|
12 |
+
def ui1():
|
13 |
+
with gr.Blocks() as demo:
|
14 |
+
gr.Markdown("## 🪄 Background Remove From Image")
|
15 |
+
|
16 |
+
with gr.Row():
|
17 |
+
with gr.Column():
|
18 |
+
image_input = gr.Image(type="filepath", label="Upload Image")
|
19 |
+
btn = gr.Button("Remove Background")
|
20 |
+
with gr.Column():
|
21 |
+
image_slider = ImageSlider(label="Before vs After",position=0.5)
|
22 |
+
save_path_box = gr.File(label="Download Transparent Image")
|
23 |
+
|
24 |
+
btn.click(
|
25 |
+
fn=process_image,
|
26 |
+
inputs=image_input,
|
27 |
+
outputs=[image_slider, save_path_box]
|
28 |
+
)
|
29 |
+
gr.Examples(
|
30 |
+
examples=[["./assets/cat.png"],["./assets/girl.jpg"],["./assets/dog.jpg"]],
|
31 |
+
inputs=[image_input],
|
32 |
+
outputs=[image_slider, save_path_box],
|
33 |
+
fn=process_image,
|
34 |
+
cache_examples=True,
|
35 |
+
)
|
36 |
+
|
37 |
+
return demo
|
38 |
+
|
39 |
+
|
40 |
+
def process_uploaded_images(uploaded_images):
|
41 |
+
return remove_background_batch_images(uploaded_images,foreground_segmenter)
|
42 |
+
def ui2():
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
gr.Markdown("## 🪄 Background Remover From Bulk Images")
|
45 |
+
with gr.Row():
|
46 |
+
with gr.Column():
|
47 |
+
image_input = gr.File(file_types=["image"], file_count="multiple", label="Upload Multiple Images")
|
48 |
+
submit_btn = gr.Button("Remove Backgrounds")
|
49 |
+
with gr.Column():
|
50 |
+
zip_output = gr.File(label="Download ZIP")
|
51 |
+
|
52 |
+
submit_btn.click(fn=process_uploaded_images, inputs=image_input, outputs=zip_output)
|
53 |
+
return demo
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def process_video(video_file):
|
58 |
+
output_path = remove_background_from_video(video_file, foreground_segmenter)
|
59 |
+
return output_path # should be absolute or relative path to processed video
|
60 |
+
|
61 |
+
def ui3():
|
62 |
+
# --- Gradio Interface ---
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("## 🎥 Remove Background From Video")
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
input_video = gr.Video(label="Upload Video (.mp4)")
|
69 |
+
run_btn = gr.Button("Remove Background")
|
70 |
+
with gr.Column():
|
71 |
+
output_video = gr.Video(label="Green Screen Video")
|
72 |
+
|
73 |
+
run_btn.click(fn=process_video, inputs=input_video, outputs=output_video)
|
74 |
+
# gr.Examples(
|
75 |
+
# examples=[["./assets/video.mp4"]],
|
76 |
+
# inputs=[input_video],
|
77 |
+
# outputs=[output_video],
|
78 |
+
# fn=process_video,
|
79 |
+
# cache_examples=True,
|
80 |
+
# )
|
81 |
+
return demo
|
82 |
+
demo1=ui1()
|
83 |
+
demo2=ui2()
|
84 |
+
demo3=ui3()
|
85 |
+
demo = gr.TabbedInterface([demo1, demo2,demo3],["Background Remove From Image","Background Remover From Bulk Images","Remove Background From Video"],title="Microsoft DAViD Background Remove")
|
86 |
+
demo.queue().launch(debug=True, share=True)
|
helper.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import subprocess
|
6 |
+
import glob
|
7 |
+
from tqdm.auto import tqdm
|
8 |
+
import uuid
|
9 |
+
import re
|
10 |
+
from zipfile import ZipFile
|
11 |
+
|
12 |
+
gpu = False
|
13 |
+
os.makedirs("./results",exist_ok=True)
|
14 |
+
|
15 |
+
def apply_green_screen(image_path, save_path,foreground_segmenter):
|
16 |
+
"""
|
17 |
+
Replaces the background of the input image with green using a segmentation model.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
image_path (str): Path to the input image.
|
21 |
+
segmenter (SoftForegroundSegmenter): Initialized segmentation model.
|
22 |
+
save_path (str, optional): If provided, saves the result to this path.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
np.ndarray: The green screen composited image.
|
26 |
+
"""
|
27 |
+
|
28 |
+
# Load image with alpha if available
|
29 |
+
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
30 |
+
if image is None:
|
31 |
+
raise FileNotFoundError(f"Image not found: {image_path}")
|
32 |
+
|
33 |
+
# Remove transparency if present
|
34 |
+
if image.shape[2] == 4:
|
35 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
|
36 |
+
|
37 |
+
# Convert to RGB for the model
|
38 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
39 |
+
|
40 |
+
# Get segmentation mask
|
41 |
+
mask = foreground_segmenter.estimate_foreground_segmentation(image_rgb)
|
42 |
+
|
43 |
+
# Normalize and convert mask to 0-255 uint8
|
44 |
+
if mask.max() <= 1.0:
|
45 |
+
mask = (mask * 255).astype(np.uint8)
|
46 |
+
else:
|
47 |
+
mask = mask.astype(np.uint8)
|
48 |
+
|
49 |
+
if mask.ndim == 2:
|
50 |
+
mask_gray = mask
|
51 |
+
elif mask.shape[2] == 1:
|
52 |
+
mask_gray = mask[:, :, 0]
|
53 |
+
else:
|
54 |
+
mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
55 |
+
|
56 |
+
_, binary_mask = cv2.threshold(mask_gray, 128, 255, cv2.THRESH_BINARY)
|
57 |
+
|
58 |
+
# Create green background
|
59 |
+
green_bg = np.full_like(image_rgb, (0, 255, 0), dtype=np.uint8)
|
60 |
+
|
61 |
+
# Create 3-channel mask
|
62 |
+
mask_3ch = cv2.cvtColor(binary_mask, cv2.COLOR_GRAY2BGR)
|
63 |
+
|
64 |
+
# Composite: foreground from image, background as green
|
65 |
+
output_rgb = np.where(mask_3ch == 255, image_rgb, green_bg)
|
66 |
+
|
67 |
+
# Convert back to BGR for OpenCV
|
68 |
+
output_bgr = cv2.cvtColor(output_rgb, cv2.COLOR_RGB2BGR)
|
69 |
+
|
70 |
+
# Save if path is given
|
71 |
+
if save_path:
|
72 |
+
cv2.imwrite(save_path, output_bgr)
|
73 |
+
|
74 |
+
return output_bgr
|
75 |
+
|
76 |
+
|
77 |
+
def create_transparent_foreground(image_path,foreground_segmenter):
|
78 |
+
uid = uuid.uuid4().hex[:8].upper()
|
79 |
+
base_name = os.path.splitext(os.path.basename(image_path))[0]
|
80 |
+
base_name = re.sub(r'[^a-zA-Z\s]', '', base_name)
|
81 |
+
base_name = base_name.strip().replace(" ", "_").replace("__","_")
|
82 |
+
save_path = f"./results/{base_name}_{uid}.png"
|
83 |
+
save_path = os.path.abspath(save_path)
|
84 |
+
|
85 |
+
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
86 |
+
if image is None:
|
87 |
+
raise FileNotFoundError(f"Image not found: {image_path}")
|
88 |
+
if image.shape[2] == 4:
|
89 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
|
90 |
+
|
91 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
92 |
+
mask = foreground_segmenter.estimate_foreground_segmentation(image_rgb)
|
93 |
+
|
94 |
+
if mask.max() <= 1.0:
|
95 |
+
mask = (mask * 255).astype(np.uint8)
|
96 |
+
else:
|
97 |
+
mask = mask.astype(np.uint8)
|
98 |
+
|
99 |
+
if mask.ndim == 3 and mask.shape[2] == 3:
|
100 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
101 |
+
|
102 |
+
_, alpha = cv2.threshold(mask, 128, 255, cv2.THRESH_BINARY)
|
103 |
+
rgba_image = np.dstack((image_rgb, alpha))
|
104 |
+
cv2.imwrite(save_path, cv2.cvtColor(rgba_image, cv2.COLOR_RGBA2BGRA))
|
105 |
+
|
106 |
+
return image_rgb, rgba_image, save_path
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
def remove_background_batch_images(img_list, foreground_segmenter):
|
112 |
+
# Create unique temp directory
|
113 |
+
uid = uuid.uuid4().hex[:8].upper()
|
114 |
+
temp_dir = os.path.abspath(f"./results/bg_removed_{uid}")
|
115 |
+
os.makedirs(temp_dir, exist_ok=True)
|
116 |
+
|
117 |
+
# Process each image
|
118 |
+
for image_path in tqdm(img_list, desc="Removing Backgrounds"):
|
119 |
+
_, _, save_path = create_transparent_foreground(image_path, foreground_segmenter)
|
120 |
+
shutil.move(save_path, os.path.join(temp_dir, os.path.basename(save_path)))
|
121 |
+
|
122 |
+
# Create zip file
|
123 |
+
zip_path = f"{temp_dir}.zip"
|
124 |
+
with ZipFile(zip_path, 'w') as zipf:
|
125 |
+
for root, _, files in os.walk(temp_dir):
|
126 |
+
for file in files:
|
127 |
+
file_path = os.path.join(root, file)
|
128 |
+
arcname = os.path.relpath(file_path, start=temp_dir)
|
129 |
+
zipf.write(file_path, arcname=arcname)
|
130 |
+
# shutil.rmtree(temp_dir)
|
131 |
+
return os.path.abspath(zip_path)
|
132 |
+
|
133 |
+
def get_sorted_paths(directory, extension="png"):
|
134 |
+
"""
|
135 |
+
Returns full paths of all images with the given extension, sorted by filename (without extension).
|
136 |
+
"""
|
137 |
+
extension = extension.lstrip(".").lower()
|
138 |
+
pattern = os.path.join(directory, f"*.{extension}")
|
139 |
+
files = glob.glob(pattern)
|
140 |
+
files.sort(key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
141 |
+
return files
|
142 |
+
|
143 |
+
|
144 |
+
def extract_all_frames_ffmpeg_gpu(video_path, output_dir="frames", extension="png", use_gpu=True):
|
145 |
+
"""
|
146 |
+
Extracts all frames from a video using ffmpeg, with optional GPU acceleration.
|
147 |
+
Returns a sorted list of full paths to the extracted frames.
|
148 |
+
"""
|
149 |
+
if os.path.exists(output_dir):
|
150 |
+
shutil.rmtree(output_dir)
|
151 |
+
os.makedirs(output_dir, exist_ok=True)
|
152 |
+
|
153 |
+
extension = extension.lstrip(".")
|
154 |
+
output_pattern = os.path.join(output_dir, f"%05d.{extension}")
|
155 |
+
|
156 |
+
command = [
|
157 |
+
"ffmpeg", "-i", video_path, output_pattern
|
158 |
+
]
|
159 |
+
if use_gpu:
|
160 |
+
command.insert(1, "cuda")
|
161 |
+
command.insert(1, "-hwaccel")
|
162 |
+
|
163 |
+
print("Running command:", " ".join(command))
|
164 |
+
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
165 |
+
|
166 |
+
return get_sorted_paths(output_dir, extension)
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
def green_screen_batch(frames, foreground_segmenter,output_dir="green_screen_frames"):
|
171 |
+
"""
|
172 |
+
Applies green screen background to a batch of frames and saves the results.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
frames (List[str]): List of image paths.
|
176 |
+
output_dir (str): Directory to save green-screened output.
|
177 |
+
"""
|
178 |
+
if os.path.exists(output_dir):
|
179 |
+
shutil.rmtree(output_dir)
|
180 |
+
os.makedirs(output_dir, exist_ok=True)
|
181 |
+
green_screen_frames=[]
|
182 |
+
for frame in tqdm(frames, desc="Processing green screen frames"):
|
183 |
+
save_image_path=os.path.join(output_dir, os.path.basename(frame))
|
184 |
+
result = apply_green_screen(
|
185 |
+
frame,
|
186 |
+
save_image_path,
|
187 |
+
foreground_segmenter
|
188 |
+
)
|
189 |
+
green_screen_frames.append(save_image_path)
|
190 |
+
return green_screen_frames
|
191 |
+
|
192 |
+
|
193 |
+
def green_screen_video_maker(original_video, green_screen_frames, batch_size=100):
|
194 |
+
"""
|
195 |
+
Creates video chunks from green screen frames based on original video's properties.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
original_video (str): Path to the original video file (to read FPS, size).
|
199 |
+
green_screen_frames (List[str]): List of green screen frame paths.
|
200 |
+
batch_size (int): Number of frames per chunked video.
|
201 |
+
"""
|
202 |
+
temp_folder = "temp_video"
|
203 |
+
if os.path.exists(temp_folder):
|
204 |
+
shutil.rmtree(temp_folder)
|
205 |
+
os.makedirs(temp_folder, exist_ok=True)
|
206 |
+
|
207 |
+
# Get video info from original video
|
208 |
+
cap = cv2.VideoCapture(original_video)
|
209 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
210 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
211 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
212 |
+
cap.release()
|
213 |
+
|
214 |
+
total_frames = len(green_screen_frames)
|
215 |
+
num_chunks = (total_frames + batch_size - 1) // batch_size # Ceiling division
|
216 |
+
|
217 |
+
for chunk_idx in tqdm(range(num_chunks), desc="Processing video chunks"):
|
218 |
+
chunk_path = os.path.join(temp_folder, f"{chunk_idx+1}.mp4")
|
219 |
+
out = cv2.VideoWriter(chunk_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
220 |
+
|
221 |
+
start_idx = chunk_idx * batch_size
|
222 |
+
end_idx = min(start_idx + batch_size, total_frames)
|
223 |
+
|
224 |
+
for frame_path in green_screen_frames[start_idx:end_idx]:
|
225 |
+
frame = cv2.imread(frame_path)
|
226 |
+
frame = cv2.resize(frame, (width, height)) # Ensure matching resolution
|
227 |
+
out.write(frame)
|
228 |
+
|
229 |
+
out.release()
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
def merge_video_chunks(output_path="final_video.mp4", temp_folder="temp_video", use_gpu=True):
|
234 |
+
"""
|
235 |
+
Merges all video chunks from temp_folder into a final single video.
|
236 |
+
"""
|
237 |
+
os.makedirs("./results", exist_ok=True)
|
238 |
+
output_path = f"../results/{output_path}" # relative to temp_folder
|
239 |
+
file_list_path = os.path.join(temp_folder, "chunks.txt")
|
240 |
+
chunk_files=sorted(
|
241 |
+
[f for f in os.listdir(temp_folder) if f.lower().endswith("mp4")],
|
242 |
+
key=lambda x: int(os.path.splitext(x)[0])
|
243 |
+
)
|
244 |
+
|
245 |
+
with open(file_list_path, "w") as f:
|
246 |
+
for chunk in chunk_files:
|
247 |
+
f.write(f"file '{chunk}'\n") # ✅ No './' prefix
|
248 |
+
|
249 |
+
ffmpeg_cmd = ["ffmpeg", "-y", "-f", "concat", "-safe", "0", "-i", "chunks.txt"]
|
250 |
+
|
251 |
+
if use_gpu:
|
252 |
+
ffmpeg_cmd += ["-c:v", "h264_nvenc", "-preset", "fast"]
|
253 |
+
else:
|
254 |
+
ffmpeg_cmd += ["-c", "copy"]
|
255 |
+
|
256 |
+
ffmpeg_cmd.append(output_path)
|
257 |
+
|
258 |
+
# ✅ Run from inside temp_folder, so chunks.txt and mp4 files are local
|
259 |
+
subprocess.run(ffmpeg_cmd, cwd=temp_folder, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
260 |
+
|
261 |
+
|
262 |
+
def extract_audio_from_video(video_path, output_audio_path="output_audio.wav", format="wav", sample_rate=16000, channels=1):
|
263 |
+
"""
|
264 |
+
Extracts audio from a video file using ffmpeg.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
video_path (str): Path to the input video file.
|
268 |
+
output_audio_path (str): Path to save the extracted audio (e.g., .wav or .mp3).
|
269 |
+
format (str): 'wav' or 'mp3'
|
270 |
+
sample_rate (int): Sampling rate in Hz (e.g., 16000 for ASR models)
|
271 |
+
channels (int): Number of audio channels (1=mono, 2=stereo)
|
272 |
+
"""
|
273 |
+
# Ensure the output directory exists
|
274 |
+
os.makedirs(os.path.dirname(output_audio_path) or ".", exist_ok=True)
|
275 |
+
|
276 |
+
# Build ffmpeg command
|
277 |
+
if format.lower() == "wav":
|
278 |
+
command = [
|
279 |
+
"ffmpeg", "-y", # Overwrite output
|
280 |
+
"-i", video_path, # Input video
|
281 |
+
"-vn", # Disable video
|
282 |
+
"-ac", str(channels), # Audio channels (1 = mono)
|
283 |
+
"-ar", str(sample_rate), # Audio sample rate
|
284 |
+
"-acodec", "pcm_s16le", # WAV codec
|
285 |
+
output_audio_path
|
286 |
+
]
|
287 |
+
elif format.lower() == "mp3":
|
288 |
+
command = [
|
289 |
+
"ffmpeg", "-y",
|
290 |
+
"-i", video_path,
|
291 |
+
"-vn",
|
292 |
+
"-ac", str(channels),
|
293 |
+
"-ar", str(sample_rate),
|
294 |
+
"-acodec", "libmp3lame", # MP3 codec
|
295 |
+
output_audio_path
|
296 |
+
]
|
297 |
+
else:
|
298 |
+
raise ValueError("Unsupported format. Use 'wav' or 'mp3'.")
|
299 |
+
|
300 |
+
# Run command silently
|
301 |
+
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
302 |
+
|
303 |
+
def add_audio(video_path, audio_path, output_path, use_gpu=False):
|
304 |
+
"""
|
305 |
+
Replaces the audio of a video with a new audio track.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
video_path (str): Path to the video file.
|
309 |
+
audio_path (str): Path to the audio file.
|
310 |
+
output_path (str): Path where the final video will be saved.
|
311 |
+
use_gpu (bool): If True, use GPU-accelerated video encoding.
|
312 |
+
"""
|
313 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
314 |
+
|
315 |
+
command = [
|
316 |
+
"ffmpeg", "-y", # Overwrite without asking
|
317 |
+
"-i", video_path, # Input video
|
318 |
+
"-i", audio_path, # Input audio
|
319 |
+
"-map", "0:v:0", # Use video from first input
|
320 |
+
"-map", "1:a:0", # Use audio from second input
|
321 |
+
"-shortest" # Trim to the shortest stream (audio/video)
|
322 |
+
]
|
323 |
+
|
324 |
+
if use_gpu:
|
325 |
+
command += ["-c:v", "h264_nvenc", "-preset", "fast"]
|
326 |
+
else:
|
327 |
+
command += ["-c:v", "copy"]
|
328 |
+
|
329 |
+
command += ["-c:a", "aac", "-b:a", "192k", output_path]
|
330 |
+
|
331 |
+
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
def remove_background_from_video(uploaded_video_path,foreground_segmenter):
|
336 |
+
# 🔁 Generate a single UUID to use for all related files
|
337 |
+
uid = uuid.uuid4().hex[:8].upper()
|
338 |
+
|
339 |
+
# Define all output paths using that UUID
|
340 |
+
base_name = os.path.splitext(os.path.basename(uploaded_video_path))[0]
|
341 |
+
base_name = re.sub(r'[^a-zA-Z\s]', '', base_name)
|
342 |
+
base_name = base_name.strip().replace(" ", "_")
|
343 |
+
|
344 |
+
temp_video_path = f"./results/{base_name}_chunks_{uid}.mp4"
|
345 |
+
audio_path = f"./results/{base_name}_audio_{uid}.wav"
|
346 |
+
final_output_path = f"./results/{base_name}_final_{uid}.mp4"
|
347 |
+
|
348 |
+
# Step 1: Extract frames
|
349 |
+
frames = extract_all_frames_ffmpeg_gpu(
|
350 |
+
video_path=uploaded_video_path,
|
351 |
+
output_dir="frames",
|
352 |
+
extension="png",
|
353 |
+
use_gpu=gpu
|
354 |
+
)
|
355 |
+
|
356 |
+
# Step 2: Remove background (green screen)
|
357 |
+
green_screen_frames = green_screen_batch(frames,foreground_segmenter)
|
358 |
+
|
359 |
+
# Step 3: Rebuild video from frames
|
360 |
+
green_screen_video_maker(uploaded_video_path, green_screen_frames, batch_size=100)
|
361 |
+
|
362 |
+
# Step 4: Merge video chunks
|
363 |
+
merge_video_chunks(output_path=os.path.basename(temp_video_path), use_gpu=gpu)
|
364 |
+
|
365 |
+
# Step 5: Extract original audio
|
366 |
+
extract_audio_from_video(uploaded_video_path, output_audio_path=audio_path)
|
367 |
+
|
368 |
+
# Step 6: Add audio back
|
369 |
+
add_audio(
|
370 |
+
video_path=temp_video_path,
|
371 |
+
audio_path=audio_path,
|
372 |
+
output_path=final_output_path,
|
373 |
+
use_gpu=True
|
374 |
+
)
|
375 |
+
|
376 |
+
return os.path.abspath(final_output_path)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
pixelwise_estimator.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied From https://github.com/microsoft/DAViD/blob/main/runtime/pixelwise_estimator.py
|
2 |
+
"""Runtime core for pixelwise estimators.
|
3 |
+
|
4 |
+
Copyright (c) Microsoft Corporation.
|
5 |
+
|
6 |
+
MIT License
|
7 |
+
|
8 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
9 |
+
of this software and associated documentation files (the "Software"), to deal
|
10 |
+
in the Software without restriction, including without limitation the rights
|
11 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
12 |
+
copies of the Software, and to permit persons to whom the Software is
|
13 |
+
furnished to do so, subject to the following conditions:
|
14 |
+
|
15 |
+
The above copyright notice and this permission notice shall be included in all
|
16 |
+
copies or substantial portions of the Software.
|
17 |
+
|
18 |
+
THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
19 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
20 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
21 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
22 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
23 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
24 |
+
SOFTWARE.
|
25 |
+
"""
|
26 |
+
|
27 |
+
from pathlib import Path
|
28 |
+
from typing import Optional, Union
|
29 |
+
|
30 |
+
import numpy as np
|
31 |
+
from onnxruntime import InferenceSession
|
32 |
+
from utils import ONNX_EP, ModelNotFoundError, prepare_image_for_model, preprocess_img
|
33 |
+
|
34 |
+
|
35 |
+
class RuntimeSession(InferenceSession):
|
36 |
+
"""The runtime session."""
|
37 |
+
|
38 |
+
def __init__(self, onnx_model: Union[str, Path], providers: Optional[list[str]] = None) -> None:
|
39 |
+
"""Create a runtime session.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
onnx_model: The path to the onnx model.
|
43 |
+
providers: Optional list of ONNX execution providers to use, defaults to [GPU, CPU].
|
44 |
+
"""
|
45 |
+
super().__init__(str(onnx_model), providers=providers or ONNX_EP)
|
46 |
+
self.onnx_model_path: Path = Path(onnx_model)
|
47 |
+
|
48 |
+
@property
|
49 |
+
def input_name(self) -> str:
|
50 |
+
"""Get the name of the input tensor."""
|
51 |
+
return self.get_inputs()[0].name
|
52 |
+
|
53 |
+
def __call__(self, x: np.ndarray) -> list[np.ndarray]:
|
54 |
+
"""Run the model on the input tensor."""
|
55 |
+
x = x.astype(np.float32)
|
56 |
+
return self.run(None, {self.input_name: x})
|
57 |
+
|
58 |
+
|
59 |
+
class PixelwiseEstimator:
|
60 |
+
"""Given an input image, estimates the pixelwise (dense) output (e.g., normal map, depth map, etc.)."""
|
61 |
+
|
62 |
+
def __init__(self, onnx_model: Union[str, Path], providers: Optional[list[str]] = None):
|
63 |
+
"""Creates a pixelwise estimator.
|
64 |
+
|
65 |
+
Arguments:
|
66 |
+
onnx_model: Path to an ONNX model.
|
67 |
+
providers: Optional list of ONNX execution providers to use, defaults to [GPU, CPU].
|
68 |
+
|
69 |
+
Raises:
|
70 |
+
TypeError: If onnx_model is not a string or Path.
|
71 |
+
ModelNotFoundError: If the model file does not exist.
|
72 |
+
ModelError: If the provided model has an undeclared or incorrect roi type.
|
73 |
+
"""
|
74 |
+
if not isinstance(onnx_model, (str, Path)):
|
75 |
+
raise TypeError(f"onnx_model should be a string or Path, got {type(onnx_model)}")
|
76 |
+
onnx_model = Path(onnx_model)
|
77 |
+
if not onnx_model.exists():
|
78 |
+
raise ModelNotFoundError(f"model {onnx_model} does not exist")
|
79 |
+
|
80 |
+
self.onnx_model = onnx_model
|
81 |
+
|
82 |
+
self.roi_size = 512
|
83 |
+
|
84 |
+
self.onnx_sess = RuntimeSession(str(onnx_model), providers=providers)
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def inference(input_img: np.ndarray, onnx_sess: RuntimeSession) -> np.ndarray:
|
88 |
+
"""Predict the pixelwise (dense) map given an input image.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
input_img: Input image.
|
92 |
+
onnx_sess: ONNX inference session.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
Predicted output map.
|
96 |
+
"""
|
97 |
+
input_tensor = onnx_sess.get_inputs()[0]
|
98 |
+
input_name = input_tensor.name
|
99 |
+
input_shape = input_tensor.shape
|
100 |
+
input_img = np.transpose(input_img, (2, 0, 1)).reshape(1, *input_shape[1:]) # HWC to BCHW
|
101 |
+
pred_onnx = onnx_sess.run(None, {input_name: input_img.astype(np.float32)})
|
102 |
+
|
103 |
+
return pred_onnx
|
104 |
+
|
105 |
+
def _estimate_dense_map(self, image: np.ndarray) -> tuple[np.ndarray]:
|
106 |
+
"""Estimating dense maps from image input."""
|
107 |
+
if not isinstance(image, np.ndarray):
|
108 |
+
raise TypeError(f"Image should be a numpy array, got {type(image)}")
|
109 |
+
|
110 |
+
image_bgr = preprocess_img(image)
|
111 |
+
processed_image, metadata = prepare_image_for_model(image_bgr, self.roi_size)
|
112 |
+
output = self.inference(processed_image, self.onnx_sess)
|
113 |
+
|
114 |
+
return output, metadata
|
requirement.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==2.2.6
|
2 |
+
onnx==1.18.0
|
3 |
+
onnxruntime-gpu==1.22.0
|
4 |
+
opencv-python==4.12.0.88
|
5 |
+
opencv-python-headless==4.12.0.88
|
6 |
+
gradio>=5.38.2
|
7 |
+
gradio_imageslider==0.0.20
|
soft_foreground_segmenter.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied From https://github.com/microsoft/DAViD/blob/main/runtime/soft_foreground_segmenter.py
|
2 |
+
"""This module provides a SoftForegroundSegmenter which segments the foreground human subjects from the background.
|
3 |
+
|
4 |
+
Copyright (c) Microsoft Corporation.
|
5 |
+
|
6 |
+
MIT License
|
7 |
+
|
8 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
9 |
+
of this software and associated documentation files (the "Software"), to deal
|
10 |
+
in the Software without restriction, including without limitation the rights
|
11 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
12 |
+
copies of the Software, and to permit persons to whom the Software is
|
13 |
+
furnished to do so, subject to the following conditions:
|
14 |
+
|
15 |
+
The above copyright notice and this permission notice shall be included in all
|
16 |
+
copies or substantial portions of the Software.
|
17 |
+
|
18 |
+
THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
19 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
20 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
21 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
22 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
23 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
24 |
+
SOFTWARE.
|
25 |
+
"""
|
26 |
+
|
27 |
+
from pathlib import Path
|
28 |
+
from typing import Optional, Union
|
29 |
+
|
30 |
+
import cv2
|
31 |
+
import numpy as np
|
32 |
+
from pixelwise_estimator import PixelwiseEstimator
|
33 |
+
from utils import composite_model_output_to_image
|
34 |
+
|
35 |
+
|
36 |
+
class SoftForegroundSegmenter(PixelwiseEstimator):
|
37 |
+
"""Estimates the soft foreground segmentation mask of human in an image."""
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
onnx_model: Union[str, Path],
|
42 |
+
providers: Optional[list[str]] = None,
|
43 |
+
binarization_threshold: Optional[float] = None,
|
44 |
+
):
|
45 |
+
"""Creates a soft foreground segmenter to segment the foreground human subjects in an image.
|
46 |
+
|
47 |
+
Arguments:
|
48 |
+
onnx_model: A path to an ONNX model.
|
49 |
+
providers: Optional list of ONNX execution providers to use, defaults to [GPU, CPU].
|
50 |
+
binarization_threshold: Threshold above which the mask is considered foreground. When None, the mask is returned as is.
|
51 |
+
|
52 |
+
Raises:
|
53 |
+
TypeError: if onnx_model is not a string or Path.
|
54 |
+
ModelNotFoundError: if the model file does not exist.
|
55 |
+
"""
|
56 |
+
super().__init__(
|
57 |
+
onnx_model,
|
58 |
+
providers=providers,
|
59 |
+
)
|
60 |
+
self.binarization_threshold = binarization_threshold
|
61 |
+
|
62 |
+
def estimate_foreground_segmentation(self, image: np.ndarray) -> np.ndarray:
|
63 |
+
"""Predict the soft foreground/background segmentation given input image."""
|
64 |
+
mask, metadata = self._estimate_dense_map(image)
|
65 |
+
mask = mask[0][0]
|
66 |
+
mask = np.transpose(mask, (1, 2, 0))
|
67 |
+
|
68 |
+
# post_process to get the final segmentation mask and composite it onto the original size
|
69 |
+
segmented_image = composite_model_output_to_image(mask, metadata, interp_mode=cv2.INTER_CUBIC)
|
70 |
+
|
71 |
+
# clip the mask to [0, 1]
|
72 |
+
segmented_image = np.clip(segmented_image, 0, 1)
|
73 |
+
|
74 |
+
# Apply threshold if binarization_threshold is set
|
75 |
+
if self.binarization_threshold:
|
76 |
+
return ((segmented_image > self.binarization_threshold) * 1).astype(np.uint8)
|
77 |
+
|
78 |
+
return segmented_image
|
utils.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Copied From https://github.com/microsoft/DAViD/blob/main/runtime/utils.py
|
2 |
+
"""Utility classes and functions for image processing and ROI operations.
|
3 |
+
|
4 |
+
Copyright (c) Microsoft Corporation.
|
5 |
+
|
6 |
+
MIT License
|
7 |
+
|
8 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
9 |
+
of this software and associated documentation files (the "Software"), to deal
|
10 |
+
in the Software without restriction, including without limitation the rights
|
11 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
12 |
+
copies of the Software, and to permit persons to whom the Software is
|
13 |
+
furnished to do so, subject to the following conditions:
|
14 |
+
|
15 |
+
The above copyright notice and this permission notice shall be included in all
|
16 |
+
copies or substantial portions of the Software.
|
17 |
+
|
18 |
+
THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
19 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
20 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
21 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
22 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
23 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
24 |
+
SOFTWARE.
|
25 |
+
"""
|
26 |
+
|
27 |
+
import cv2
|
28 |
+
import numpy as np
|
29 |
+
|
30 |
+
ONNX_EP = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
31 |
+
UINT8_MAX = np.iinfo(np.uint8).max
|
32 |
+
UINT16_MAX = np.iinfo(np.uint16).max
|
33 |
+
|
34 |
+
|
35 |
+
class ImageFormatError(Exception):
|
36 |
+
"""Exception raised for invalid image formats."""
|
37 |
+
|
38 |
+
pass
|
39 |
+
|
40 |
+
|
41 |
+
class ModelNotFoundError(Exception):
|
42 |
+
"""Exception raised when model file is not found."""
|
43 |
+
|
44 |
+
pass
|
45 |
+
|
46 |
+
|
47 |
+
def preprocess_img(img: np.ndarray) -> np.ndarray:
|
48 |
+
"""Preprocesses a BGR image for DNN. Turning to float if not already and normalizing to [0, 1].
|
49 |
+
|
50 |
+
Normalization of uint images is done by dividing by brightest possible value (e.g. 255 for uint8).
|
51 |
+
|
52 |
+
Arguments:
|
53 |
+
img: The image to preprocess, can be uint8, uint16, float16, float32 or float64.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
The preprocessed image in np.float32 format.
|
57 |
+
|
58 |
+
Raises:
|
59 |
+
ImageFormatError: If the image is not three channels or not uint8, uint16, float16, float32 or float64.
|
60 |
+
"""
|
61 |
+
if img.ndim != 3 or img.shape[2] != 3:
|
62 |
+
raise ImageFormatError("image must be 3 channels, got shape: {img.shape}")
|
63 |
+
if img.dtype not in [np.uint8, np.uint16, np.float16, np.float32, np.float64]: # noqa: PLR6201
|
64 |
+
raise ImageFormatError("image must be uint8 or float16, float32, float64")
|
65 |
+
|
66 |
+
if img.dtype == np.uint8:
|
67 |
+
img = img.astype(np.float32) / UINT8_MAX
|
68 |
+
if img.dtype == np.uint16:
|
69 |
+
img = img.astype(np.float32) / UINT16_MAX
|
70 |
+
img = np.clip(img, 0, 1)
|
71 |
+
return img.astype(np.float32)
|
72 |
+
|
73 |
+
|
74 |
+
def prepare_image_for_model(image: np.ndarray, roi_size: int = 512) -> tuple[np.ndarray, dict]:
|
75 |
+
"""Prepare any input image for model inference by resizing to roi_size x roi_size.
|
76 |
+
|
77 |
+
This function takes an image of any size and prepares it for a model that expects
|
78 |
+
a square input (e.g., 512x512). It handles aspect ratio preservation by padding
|
79 |
+
with replicated border values.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
image: Input image of any size
|
83 |
+
roi_size: Target size for the model (default 512)
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
tuple: (preprocessed_image, metadata_dict)
|
87 |
+
- preprocessed_image: Image resized to roi_size x roi_size
|
88 |
+
- metadata_dict: Contains information needed to composite back to original size
|
89 |
+
"""
|
90 |
+
# Get original shape
|
91 |
+
original_shape = image.shape[:2] # (height, width)
|
92 |
+
|
93 |
+
# Calculate padding to make the image square
|
94 |
+
if original_shape[0] < original_shape[1]:
|
95 |
+
pad_h = (original_shape[1] - original_shape[0]) // 2
|
96 |
+
pad_w = 0
|
97 |
+
pad_h_extra = original_shape[1] - original_shape[0] - pad_h
|
98 |
+
pad_w_extra = 0
|
99 |
+
elif original_shape[0] > original_shape[1]:
|
100 |
+
pad_w = (original_shape[0] - original_shape[1]) // 2
|
101 |
+
pad_h = 0
|
102 |
+
pad_w_extra = original_shape[0] - original_shape[1] - pad_w
|
103 |
+
pad_h_extra = 0
|
104 |
+
else:
|
105 |
+
pad_h = pad_w = pad_h_extra = pad_w_extra = 0
|
106 |
+
|
107 |
+
# Pad the image to make it square
|
108 |
+
padded_image = cv2.copyMakeBorder(
|
109 |
+
image,
|
110 |
+
top=pad_h,
|
111 |
+
bottom=pad_h_extra,
|
112 |
+
left=pad_w,
|
113 |
+
right=pad_w_extra,
|
114 |
+
borderType=cv2.BORDER_REPLICATE,
|
115 |
+
)
|
116 |
+
|
117 |
+
square_shape = padded_image.shape[:2]
|
118 |
+
|
119 |
+
while padded_image.shape[1] > roi_size * 3 and padded_image.shape[0] > roi_size * 3:
|
120 |
+
padded_image = cv2.pyrDown(padded_image)
|
121 |
+
|
122 |
+
resized_image = cv2.resize(padded_image, (roi_size, roi_size), interpolation=cv2.INTER_LINEAR)
|
123 |
+
|
124 |
+
metadata = {
|
125 |
+
"original_shape": original_shape,
|
126 |
+
"square_shape": square_shape,
|
127 |
+
"original_padding": (pad_h, pad_w, pad_h_extra, pad_w_extra),
|
128 |
+
}
|
129 |
+
|
130 |
+
return resized_image, metadata
|
131 |
+
|
132 |
+
|
133 |
+
def composite_model_output_to_image(
|
134 |
+
model_output: np.ndarray, metadata: dict, interp_mode: int = cv2.INTER_NEAREST
|
135 |
+
) -> np.ndarray:
|
136 |
+
"""Composite model output back to the original image size.
|
137 |
+
|
138 |
+
Takes the model output (which should be roi_size x roi_size) and composites it
|
139 |
+
back to the original image dimensions using the metadata from prepare_image_for_model.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
model_output: Output from the model (roi_size x roi_size)
|
143 |
+
metadata: Metadata dict returned from prepare_image_for_model
|
144 |
+
interp_mode: Interpolation mode for resizing (default INTER_NEAREST for discrete outputs)
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
np.ndarray: Output composited to original image size
|
148 |
+
"""
|
149 |
+
pad_h, pad_w, pad_h_extra, pad_w_extra = metadata["original_padding"]
|
150 |
+
|
151 |
+
# Resize the entire model output back to the square shape
|
152 |
+
square_shape = metadata["square_shape"]
|
153 |
+
resized_to_square = cv2.resize(model_output, (square_shape[1], square_shape[0]), interpolation=interp_mode)
|
154 |
+
|
155 |
+
# Remove the padding to get back to original dimensions
|
156 |
+
if pad_h > 0 or pad_h_extra > 0:
|
157 |
+
final_output = resized_to_square[pad_h : square_shape[0] - pad_h_extra, :]
|
158 |
+
elif pad_w > 0 or pad_w_extra > 0:
|
159 |
+
final_output = resized_to_square[:, pad_w : square_shape[1] - pad_w_extra]
|
160 |
+
else:
|
161 |
+
final_output = resized_to_square
|
162 |
+
|
163 |
+
return final_output
|